

竜 TatSu

At least for the people who send me mail about a new language that
they’re designing, the general advice is: do it to learn about how
to write a compiler. Don’t have any expectations that anyone will
use it, unless you hook up with some sort of organization in a
position to push it hard. It’s a lottery, and some can buy a lot of
the tickets. There are plenty of beautiful languages (more beautiful
than C) that didn’t catch on. But someone does win the lottery, and
doing a language at least teaches you something.

Dennis Ritchie [http://en.wikipedia.org/wiki/Dennis_Ritchie] (1941-2011) Creator of the C [http://en.wikipedia.org/wiki/C_language] programming
language and of Unix [http://en.wikipedia.org/wiki/Unix]

竜 TatSu is a tool that takes grammars in a variation of EBNF [http://en.wikipedia.org/wiki/Ebnf] as input,
and outputs memoizing [http://en.wikipedia.org/wiki/Memoization] (Packrat [http://bford.info/packrat/]) PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar] parsers in Python [http://python.org].

竜 TatSu can compile a grammar stored in a string into a
tatsu.grammars.Grammar object that can be used to parse any given
input, much like the re [https://docs.python.org/3.4/library/re.html] module does with regular expressions, or it can generate a Python [http://python.org] module that implements the parser.

竜 TatSu supports left-recursive [https://en.wikipedia.org/wiki/Left_recursion] rules in PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar] grammars, and it honors left-associativity in the resulting parse trees.

	Introduction

	Rationale

	Installation

	Using the Tool
	As a Library

	Compiling grammars to Python

	The Generated Parsers

	Using the Generated Parser

	Grammar Syntax
	Rules

	Expressions

	Rules with Arguments

	Based Rules

	Memoization

	Rule Overrides

	Grammar Name

	Whitespace

	Case Sensitivity

	Comments

	Reserved Words and Keywords

	Include Directive

	Left Recursion

	Grammar Directives
	@@grammar :: <word>

	@@comments :: <regexp>

	@@eol_comments :: <regexp>

	@@ignorecase :: <bool>

	@@keyword :: {<word>|<string>}+

	@@left_recursion :: <bool>

	@@namechars :: <string>

	@@nameguard :: <bool>

	@@parseinfo :: <bool>

	@@whitespace :: <regexp>

	Abstract Syntax Trees (ASTs)

	Semantic Actions

	Building Models
	Walking Models

	Model Class Hierarchies

	Templates and Translation

	Left Recursion

	Calc Mini Tutorial
	The initial grammar

	The Tatsu grammar

	Add cut expressions

	Annotating the grammar

	Semantics

	One rule per expression type

	Object models

	Code Generation

	Traces

	Grako Compatibility

	Using ANTLR Grammars

	Examples
	Tatsu

	Calc

	g2e

	Support

	Credits

	Contributors

	Contributing
	Donations

	License

Introduction

竜 TatSu is different from other PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar] parser generators:

	Generated parsers use Python [http://python.org]’s very efficient exception-handling
system to backtrack. 竜 TatSu generated parsers simply assert what
must be parsed. There are no complicated if-then-else sequences for
decision making or backtracking. Memoization allows going over the
same input sequence several times in linear time.

	Positive and negative lookaheads, and the cut element (with its
cleaning of the memoization cache) allow for additional, hand-crafted
optimizations at the grammar level.

	Delegation to Python [http://python.org]’s re [https://docs.python.org/3.4/library/re.html] module for lexemes allows for
(Perl [http://www.perl.org/]-like) powerful and efficient lexical analysis.

	The use of Python [http://python.org]’s context managers [http://docs.python.org/2/library/contextlib.html] considerably reduces the
size of the generated parsers for code clarity, and enhanced
CPU-cache hits.

	Include files, rule inheritance, and rule inclusion give 竜 TatSu
grammars considerable expressive power.

	Automatic generation of Abstract Syntax Trees_ and Object Models,
along with Model Walkers and Code Generators make analysis and
translation approachable

The parser generator, the run-time support, and the generated parsers
have measurably low Cyclomatic complexity [http://en.wikipedia.org/wiki/Cyclomatic_complexity]. At around 5 KLOC [http://en.wikipedia.org/wiki/KLOC] of
Python [http://python.org], it is possible to study all its source code in a single
session.

The only dependencies are on the Python [http://python.org] standard library, yet the
regex [https://pypi.python.org/pypi/regex] library will be used if installed, and colorama [https://pypi.python.org/pypi/colorama/] will be used
on trace output if available. pygraphviz [https://pypi.python.org/pypi/pygraphviz] is required for generating
diagrams.

竜 TatSu is feature-complete and currently being used with complex
grammars to parse, analyze, and translate hundreds of thousands of lines
of input text, including source code in several programming languages.

Rationale

竜 TatSu was created to address some recurring problems encountered
over decades of working with parser generation tools:

	Some programming languages allow the use of keywords as
identifiers, or have different meanings for symbols depending on
context (Ruby [http://www.ruby-lang.org/]). A parser needs control of lexical analysis to be
able to handle those languages.

	LL and LR grammars become contaminated with myriads of lookahead
statements to deal with ambiguous constructs in the source language.
PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar] parsers address ambiguity from the onset.

	Separating the grammar from the code that implements the semantics,
and using a variation of a well-known grammar syntax (EBNF [http://en.wikipedia.org/wiki/Ebnf]) allows
for full declarative power in language descriptions. General-purpose
programming languages are not up to the task.

	Semantic actions do not belong in a grammar. They create yet
another programming language to deal with when doing parsing and
translation: the source language, the grammar language, the semantics
language, the generated parser’s language, and the translation’s
target language. Most grammar parsers do not check the syntax of
embedded semantic actions, so errors get reported at awkward moments,
and against the generated code, not against the grammar.

	Preprocessing (like dealing with includes, fixed column formats, or
structure-through-indentation) belongs in well-designed program code;
not in the grammar.

	It is easy to recruit help with knowledge about a mainstream
programming language like Python [http://python.org], but help is hard to find for
working with complex grammar-description languages. 竜 TatSu
grammars are in the spirit of a Translators and Interpreters 101
course (if something is hard to explain to a college student, it’s
probably too complicated, or not well understood).

	Generated parsers should be easy to read and debug by humans. Looking
at the generated source code is sometimes the only way to find
problems in a grammar, the semantic actions, or in the parser
generator itself. It’s inconvenient to trust generated code that one
cannot understand.

	Python [http://python.org] is a great language for working with language parsing and
translation.

Installation

$ pip install tatsu

Warning

Versions of 竜 TatSu since 5.0.0 may require Python>=3.8. Python 2.7 is no longer supported

Using the Tool

As a Library

竜 TatSu can be used as a library, much like Python [http://python.org]’s re, by embedding grammars as strings and generating grammar models instead of generating Python [http://python.org] code.

	tatsu.compile(grammar, name=None, **kwargs)

Compiles the grammar and generates a model that can subsequently be used for parsing input with.

	tatsu.parse(grammar, input, start=None, **kwargs)

Compiles the grammar and parses the given input producing an AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] as result. The result is equivalent to calling:

model = compile(grammar)
ast = model.parse(input)

Compiled grammars are cached for efficiency.

	tatsu.to_python_sourcecode(grammar, name=None, filename=None, **kwargs)

Compiles the grammar to the Python [http://python.org] sourcecode that implements the parser.

	to_python_model(grammar, name=None, filename=None, **kwargs)

Compiles the grammar and generates the Python [http://python.org] sourcecode that implements the object model defined by rule annotations.

This is an example of how to use Tatsu as a library:

GRAMMAR = '''
 @@grammar::Calc

 start = expression $;

 expression
 =
 | term '+' ~ expression
 | term '-' ~ expression
 | term
 ;

 term
 =
 | factor '*' ~ term
 | factor '/' ~ term
 | factor
 ;

 factor
 =
 | '(' ~ @:expression ')'
 | number
 ;

 number = /\d+/ ;
'''

def main():
 import pprint
 import json
 from tatsu import parse
 from tatsu.util import asjson

 ast = parse(GRAMMAR, '3 + 5 * (10 - 20)')
 print('PPRINT')
 pprint.pprint(ast, indent=2, width=20)
 print()

 print('JSON')
 print(json.dumps(asjson(ast), indent=2))
 print()

if __name__ == '__main__':
 main()

And this is the output:

PPRINT
['3',
 '+',
 ['5',
 '*',
 ['10',
 '-',
 '20']]]

JSON
[
 "3",
 "+",
 [
 "5",
 "*",
 [
 "10",
 "-",
 "20"
]
]
]

Compiling grammars to Python

Tatsu can be run from the command line:

$ python -m tatsu

Or:

$ scripts/tatsu

Or just:

$ tatsu

if Tatsu was installed using easy_install or pip.

The -h and –help parameters provide full usage information:

$ python -m tatsu -h
usage: tatsu [--generate-parser | --draw | --object-model | --pretty]
 [--color] [--trace] [--no-left-recursion] [--name NAME]
 [--no-nameguard] [--outfile FILE] [--object-model-outfile FILE]
 [--whitespace CHARACTERS] [--help] [--version]
 GRAMMAR

TatSu takes a grammar in a variation of EBNF as input, and outputs a memoizing
PEG/Packrat parser in Python.

positional arguments:
GRAMMAR the filename of the Tatsu grammar to parse

optional arguments:
--generate-parser generate parser code from the grammar (default)
--draw, -d generate a diagram of the grammar (requires --outfile)
--object-model, -g generate object model from the class names given as
 rule arguments
--pretty, -p generate a prettified version of the input grammar

parse-time options:
--color, -c use color in traces (requires the colorama library)
--trace, -t produce verbose parsing output

generation options:
--no-left-recursion, -l
 turns left-recursion support off
--name NAME, -m NAME Name for the grammar (defaults to GRAMMAR base name)
--no-nameguard, -n allow tokens that are prefixes of others
--outfile FILE, --output FILE, -o FILE
 output file (default is stdout)
--object-model-outfile FILE, -G FILE
 generate object model and save to FILE
--whitespace CHARACTERS, -w CHARACTERS
 characters to skip during parsing (use "" to disable)

common options:
--help, -h show this help message and exit
--version, -v provide version information and exit
$

The Generated Parsers

A Tatsu generated parser consists of the following classes:

	A MyLanguageBuffer class derived from tatsu.buffering.Buffer
that handles the grammar definitions for whitespace, comments,
and case significance.

	A MyLanguageParser class derived from tatsu.parsing.Parser
which uses a MyLanguageBuffer for traversing input text, and
implements the parser using one method for each grammar rule:

def _somerulename_(self):
 ...

	A MyLanguageSemantics class with one semantic method per grammar
rule. Each method receives as its single parameter the Abstract
Syntax Tree [http://en.wikipedia.org/wiki/Abstract_syntax_tree] (AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree]) built from the rule invocation:

def somerulename(self, ast):
 return ast

	A if __name__ == '__main__': definition, so the generated parser
can be executed as a Python [http://python.org] script.

The methods in the delegate class return the same AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] received as
parameter, but custom semantic classes can override the methods to have
them return anything (for example, a Semantic Graph [http://en.wikipedia.org/wiki/Abstract_semantic_graph]). The semantics
class can be used as a template for the final semantics implementation,
which can omit methods for the rules that do not need semantic
treatment.

If present, a _default() method will be called in the semantics
class when no method matched the rule name:

def _default(self, ast):
 ...
 return ast

If present, a _postproc() method will be called in the semantics
class after each rule (including the semantics) is processed. This
method will receive the current parsing context as parameter:

def _postproc(self, context, ast):
 ...

Using the Generated Parser

To use the generated parser, just subclass the base or the abstract
parser, create an instance of it, and invoke its parse() method
passing the grammar to parse and the starting rule’s name as parameter:

from tatsu.util import asjson
from myparser import MyParser

parser = MyParser()
ast = parser.parse('text to parse', rule_name='start')
print(ast)
print(json.dumps(asjson(ast), indent=2))

The generated parsers’ constructors accept named arguments to specify
whitespace characters, the regular expression for comments, case
sensitivity, verbosity, and more (see below).

To add semantic actions, just pass a semantic delegate to the parse
method:

model = parser.parse(text, rule_name='start', semantics=MySemantics())

If special lexical treatment is required (as in 80 column languages),
then a descendant of tatsu.buffering.Buffer can be passed instead of
the text:

class MySpecialBuffer(MyLanguageBuffer):
 ...

buf = MySpecialBuffer(text)
model = parser.parse(buf, rule_name='start', semantics=MySemantics())

The generated parser’s module can also be invoked as a script:

$ python myparser.py inputfile startrule

As a script, the generated parser’s module accepts several options:

$ python myparser.py -h
usage: myparser.py [-h] [-c] [-l] [-n] [-t] [-w WHITESPACE] FILE [STARTRULE]

Simple parser for DBD.

positional arguments:
 FILE the input file to parse
 STARTRULE the start rule for parsing

optional arguments:
 -h, --help show this help message and exit
 -c, --color use color in traces (requires the colorama library)
 -l, --list list all rules and exit
 -n, --no-nameguard disable the 'nameguard' feature
 -t, --trace output trace information
 -w WHITESPACE, --whitespace WHITESPACE
 whitespace specification

Grammar Syntax

竜 TatSu uses a variant of the standard EBNF [http://en.wikipedia.org/wiki/Ebnf] syntax. Syntax
definitions for VIM [http://www.vim.org/] and for Sublime Text [https://www.sublimetext.com] can be found under the
etc/vim and etc/sublime directories in the source code
distribution.

Rules

A grammar consists of a sequence of one or more rules of the form:

name = <expre> ;

If a name collides with a Python [http://python.org] keyword, an underscore (_)
will be appended to it on the generated parser.

Rule names that start with an uppercase character:

FRAGMENT = /[a-z]+/ ;

do not advance over whitespace before beginning to parse. This feature
becomes handy when defining complex lexical elements, as it allows
breaking them into several rules.

The parser returns an AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] value for each rule depending on what was
parsed:

	A single value

	A list of AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree]

	A dict-like object for rules with named elements

	An object, when ModelBuilderSemantics is used

	None

See the Abstract Syntax Trees and Building Models sections for more
details.

Expressions

The expressions, in reverse order of operator precedence, can be:

comment

Python [http://python.org]-style comments are allowed.

e1 | e2

Choice. Match either e1 or e2.

A | be be used before the first option if desired:

choices
 =
 | e1
 | e2
 | e3
 ;

e1 e2

Sequence. Match e1 and then match e2.

(e)

Grouping. Match e. For example: ('a' | 'b').

[e]

Optionally match e.

{ e } or { e }*

closure. Match e zero or more times. The AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] returned for a closure is always a list.

{ e }+

Positive closure. Match e one or more times. The AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] is always a list.

{}

Empty closure. Match nothing and produce an empty list as AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree].

~

The cut expression. Commit to the current option and prevent other options from being considered even if what follows fails to parse.

In this example, other options won’t be considered if a
parenthesis is parsed:

atom
 =
 '(' ~ @:expre ')'
 | int
 | bool
 ;

s%{ e }+

Positive join. Inspired by Python [http://python.org]’s str.join(), it parses the same as this expression:

e {s ~ e}

yet the result is a single list of the form:

[e, s, e, s, e....]

Use grouping if s is more complex than a token or a pattern:

(s t)%{ e }+

s%{ e } or s%{ e }*

Join. Parses the list of s-separated expressions, or the empty closure.

It is equivalent to:

s%{e}+|{}

op<{ e }+

Left join. Like the join expression, but the result is a left-associative tree built with tuple(), in wich the first element is the separator (op), and the other two elements are the operands.

The expression:

'+'<{/\d+/}+

Will parse this input:

1 + 2 + 3 + 4

To this tree:

(
 '+',
 (
 '+',
 (
 '+',
 '1',
 '2'
),
 '3'
),
 '4'
)

op>{ e }+

Right join. Like the join expression, but the result is a right-associative tree built with tuple(), in wich the first element is the separator (op), and the other two elements are the operands.

The expression:

'+'>{/\d+/}+

Will parse this input:

1 + 2 + 3 + 4

To this tree:

(
 '+',
 '1',
 (
 '+',
 '2',
 (
 '+',
 '3',
 '4'
)
)
)

s.{ e }+

Positive gather. Like positive join, but the separator is not included in the resulting AST [https://en.wikipedia.org/wiki/Abstract_syntax_tree].

s.{ e } or s.{ e }*

Gather. Like the join, but the separator is not included in the resulting AST [https://en.wikipedia.org/wiki/Abstract_syntax_tree].

It is equivalent to:

s.{e}+|{}

&e

Positive lookahead. Succeed if e can be parsed, but do not consume any input.

!e

Negative lookahead. Fail if e can be parsed, and do not consume any input.

'text' or "text"

Match the token text within the quotation marks.

Note that if text is alphanumeric, then 竜 TatSu will check
that the character following the token is not alphanumeric. This
is done to prevent tokens like IN matching when the text ahead
is INITIALIZE. This feature can be turned off by passing
nameguard=False to the Parser or the Buffer, or by using a
pattern expression (see below) instead of a token expression.
Alternatively, the @@nameguard or @@namechars directives may
be specified in the grammar:

@@nameguard :: False

or to specify additional characters that should also be considered
part of names:

@@namechars :: '$-.'

r'text' or r"text"

Match the token text within the quotation marks, interpreting text like Python [http://python.org]’s raw string literal [https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals]s.

?"regexp" or ?'regexp' or /regexp/

The pattern expression. Match the Python [http://python.org] regular expression regexp at the current text position. Unlike other expressions, this one does not advance over whitespace or comments. For that, place the regexp as the only term in its own rule.

The regex is interpreted as a Python [http://python.org]’s raw string literal [https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals] and passed with regexp.MULTILINE | regexp.UNICODE options to the Python [http://python.org] re [https://docs.python.org/3.4/library/re.html] module (or to regex [https://pypi.python.org/pypi/regex], if available), using match() at the current position in the text. The matched text is the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] for the expression.

Consecutive patterns are concatenated to form a single one.

/./

The any expression, matches the next position in the input. It works exactly like the ?'.' pattern, but is implemented at the lexical level, without regular expressions.

->e

The “skip to” expression; useful for writing recovery rules.

The parser will advance over input, one character at time, until e matches. Whitespace and comments will be skipped at each step. Advancing over input is done efficiently, with no regular expressions are involved.

The expression is equivalent to:

{ !e /./ } e

A common form of the expression is ->&e, which is equivalent to:

{ !e /./ } &e

This is an example of the use of the “skip to” expression for recovery:

statement =
 | if_statement
 # ...
 ;

if_statement
 =
 | 'if' condition 'then' statement ['else' statement]
 | 'if' statement_recovery
 ;

statement_recovery = ->&statement ;

`constant`

Match nothing, but behave as if constant had been parsed.

Constants can be used to inject elements into the concrete and
abstract syntax trees, perhaps avoiding having to write a
semantic action. For example:

boolean_option = name ['=' (boolean|`true`)] ;

rulename

Invoke the rule named rulename. To help with lexical aspects of grammars, rules with names that begin with an uppercase letter will not advance the input over whitespace or comments.

>rulename

The include operator. Include the right hand side of rule rulename at this point.

The following set of declarations:

includable = exp1 ;

expanded = exp0 >includable exp2 ;

Has the same effect as defining expanded as:

expanded = exp0 exp1 exp2 ;

Note that the included rule must be defined before the rule that
includes it.

()

The empty expression. Succeed without advancing over input. Its value is None.

!()

The fail expression. This is actually ! applied to (), which always fails.

name:e

Add the result of e to the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] using name as key. If name collides with any attribute or method of dict, or is a Python [http://python.org] keyword, an underscore (_) will be appended to the name.

name+:e

Add the result of e to the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] using name as key. Force the entry to be a list even if only one element is added. Collisions with dict attributes or Python [http://python.org] keywords are resolved by appending an underscore to name.

@:e

The override operator. Make the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] for the complete rule be the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] for e.

The override operator is useful to recover only part of the right
hand side of a rule without the need to name it, or add a
semantic action.

This is a typical use of the override operator:

subexp = '(' @:expre ')' ;

The [AST][Abstract Syntax Tree] returned for the subexp rule
will be the [AST][Abstract Syntax Tree] recovered from invoking
expre.

@+:e

Like @:e, but make the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] always be a list.

This operator is convenient in cases such as:

arglist = '(' @+:arg {',' @+:arg}* ')' ;

In which the delimiting tokens are of no interest.

$

The end of text symbol. Verify that the end of the input text has been reached.

When there are no named items in a rule, the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] consists of the
elements parsed by the rule, either a single item or a list. This
default behavior makes it easier to write simple rules:

number = /[0-9]+/ ;

Without having to write:

number = number:/[0-9]+/ ;

When a rule has named elements, the unnamed ones are excluded from the
AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] (they are ignored).

Rules with Arguments

竜 TatSu allows rules to specify Python [http://python.org]-style arguments:

addition(Add, op='+')
 =
 addend '+' addend
 ;

The arguments values are fixed at grammar-compilation time.

An alternative syntax is available if no keyword parameters are
required:

addition::Add, '+'
 =
 addend '+' addend
 ;

Semantic methods must be ready to receive any arguments declared in the
corresponding rule:

def addition(self, ast, name, op=None):
 ...

When working with rule arguments, it is good to define a _default()
method that is ready to take any combination of standard and keyword
arguments:

def _default(self, ast, *args, **kwargs):
 ...

Based Rules

Rules may extend previously defined rules using the < operator. The
base rule must be defined previously in the grammar.

The following set of declarations:

base::Param = exp1 ;

extended < base = exp2 ;

Has the same effect as defining extended as:

extended::Param = exp1 exp2 ;

Parameters from the base rule are copied to the new rule if the new
rule doesn’t define its own. Repeated inheritance should be possible,
but it hasn’t been tested.

Memoization

竜 TatSu is a packrat parser. The result of parsing a rule at a given position in the input is
cached, so the next time the parser visits the same input position with the same rule the same
result is returned and the input advanced, without repeating the parsing. Memoization allows for
grammars that are clearer and easier to write because there’s no fear that repeating
subexpressions will impact performance.

There are rules that should not be memoized. For example, rules that may succeed or not depending on the associated semantic action should not be memoized if sucess depends on more than just the input.

The @nomemo decorator turns off memoization for a particular rule:

@nomemo
INDENT = () ;

@nomemo
DEDENT = () ;

Rule Overrides

A grammar rule may be redefined by using the @override decorator:

start = ab $;

ab = 'xyz' ;

@override
ab = @:'a' {@:'b'} ;

When combined with the #include directive, rule overrides can be
used to create a modified grammar without altering the original.

Grammar Name

The prefix to be used in classes generated by 竜 TatSu can be passed to
the command-line tool using the -m option:

$ tatsu -m MyLanguage mygrammar.ebnf

will generate:

class MyLanguageParser(Parser):
 ...

The name can also be specified within the grammar using the
@@grammar directive:

@@grammar :: MyLanguage

Whitespace

By default, 竜 TatSu generated parsers skip the usual whitespace
characters with the regular expression r'\s+' using the
re.UNICODE flag (or with the Pattern_White_Space property if the
regex [https://pypi.python.org/pypi/regex] module is available), but you can change that behavior by
passing a whitespace parameter to your parser.

For example, the following will skip over tab (\t) and space
characters, but not so with other typical whitespace characters such as
newline (\n):

parser = MyParser(text, whitespace='\t ')

The character string is converted into a regular expression character
set before starting to parse.

You can also provide a regular expression directly instead of a string.
The following is equivalent to the above example:

parser = MyParser(text, whitespace=re.compile(r'[\t]+'))

Note that the regular expression must be pre-compiled to let 竜 TatSu
distinguish it from plain string.

If you do not define any whitespace characters, then you will have to
handle whitespace in your grammar rules (as it’s often done in PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar]
parsers):

parser = MyParser(text, whitespace='')

Whitespace may also be specified within the grammar using the
@@whitespace directive, although any of the above methods will
overwrite the setting in the grammar:

@@whitespace :: /[\t]+/

Case Sensitivity

If the source language is case insensitive, it can be specified in the
parser by using the ignorecase parameter:

parser = MyParser(text, ignorecase=True)

You may also specify case insensitivity within the grammar using the
@@ignorecase directive:

@@ignorecase :: True

The change will affect token matching, but not pattern matching. Use (?i)
in patterns that should ignore case.

Comments

Parsers will skip over comments specified as a regular expression using
the comments_re parameter:

parser = MyParser(text, comments_re="\(*.*?*\)")

For more complex comment handling, you can override the
Buffer.eat_comments() method.

For flexibility, it is possible to specify a pattern for end-of-line
comments separately:

parser = MyParser(
 text,
 comments_re="\(*.*?*\)",
 eol_comments_re="#.*?$"
)

Both patterns may also be specified within a grammar using the
@@comments and @@eol_comments directives:

@@comments :: /\(*.*?*\)/
@@eol_comments :: /#.*?$/

Reserved Words and Keywords

Some languages must reserve the use of certain tokens as valid
identifiers because the tokens are used to mark particular constructs in
the language. Those reserved tokens are known as Reserved Words [https://en.wikipedia.org/wiki/Reserved_word] or
Keywords [https://en.wikipedia.org/wiki/Reserved_word]

竜 TatSu provides support for preventing the use of keywords [https://en.wikipedia.org/wiki/Reserved_word] as
identifiers though the @@ keyword directive,and the @ name
decorator.

A grammar may specify reserved tokens providing a list of them in one or
more @@ keyword directives:

@@keyword :: if endif
@@keyword :: else elseif

The @ name decorator checks that the result of a grammar rule does
not match a token defined as a keyword [https://en.wikipedia.org/wiki/Reserved_word]:

@name
identifier = /(?!\d)\w+/ ;

There are situations in which a token is reserved only in a very
specific context. In those cases, a negative lookahead will prevent the
use of the token:

statements = {!'END' statement}+ ;

Include Directive

竜 TatSu grammars support file inclusion through the include directive:

#include :: "filename"

The resolution of the filename is relative to the directory/folder of
the source. Absolute paths and ../ navigations are honored.

The functionality required for implementing includes is available to all
竜 TatSu-generated parsers through the Buffer class; see the
EBNFBuffer class in the tatsu.parser module for an example.

Left Recursion

竜 TatSu supports left recursion in PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar]
grammars. The algorithm used is Warth et al [http://www.vpri.org/pdf/tr2007002_packrat.pdf]’s.

Sometimes, while debugging a grammar, it is useful to turn
left-recursion support on or off:

parser = MyParser(
 text,
 left_recursion=True,
)

Left recursion can also be turned off from within the grammar using the
@@left_recursion directive:

@@left_recursion :: False

Grammar Directives

竜 TatSu allows directives in the grammar that control the behavior of the generated parsers. All directives are of the form @@name :: <value>. For example:

@@ignorecase :: True

The directives supported by 竜 TatSu are described below.

@@grammar :: <word>

Specifies the name of the grammar, and provides the base name for the classes in parser source-code generation.

@@comments :: <regexp>

Specifies a regular expression to identify and exclude inline (bracketed) comments before the text is scanned by the parser. For (* ... *) comments:

@@comments :: /\(*((?:.|\n)*?)*\)/

@@eol_comments :: <regexp>

Specifies a regular expression to identify and exclude end-of-line comments before the text is scanned by the parser. For # ... comments:

@@eol_comments :: /#([^\n]*?)$/

@@ignorecase :: <bool>

If set to True makes 竜 TatSu not consider case when parsing tokens. Defaults to False:

@@ignorecase :: True

@@keyword :: {<word>|<string>}+

Specifies the list of strings or words that the grammar should consider as “keywords”.
May appear more than once. See the Reserved Words and Keywords section for an explanation.

@@left_recursion :: <bool>

Enables left-recursive rules in the grammar. See the Left Recursion sections for an explanation.

@@namechars :: <string>

A list of (non-alfanumeric) characters that should be considered part of names when using the @@nameguard feature:

@@namechars :: '-_$'

@@nameguard :: <bool>

When set to True, avoids matching tokens when the next character in the input sequence is alfarnumeric or a @@namechar. Defaults to True. See the ‘text’ expression for an explanation.

@@nameguard :: False

@@parseinfo :: <bool>

When True, the parser will add parse information to every AST and Node generated by the parse under a parseinfo field. The information will include:

	rule the rule name that parsed the node

	pos the initial position for the node in the input

	endpos the final position for the node in the input

	line the initial input line number for the element

	endline the final line number for the element

Enabling @@parseinfo will allow precise reporting over the input source-code while performing semantic actions.

@@whitespace :: <regexp>

Provides a regular expression for the whitespace to be ignored by the parser. It defaults to /(?s)\s+/:

@@whitespace :: /[\t]+/

Abstract Syntax Trees (ASTs)

By default, an AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] is either a list (for closures and rules
without named elements), or dict-derived object that contains one item
for every named element in the grammar rule. Items can be accessed
through the standard dict syntax (ast['key']), or as attributes
(ast.key).

AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] entries are single values if only one item was associated with a
name, or lists if more than one item was matched. There’s a provision in
the grammar syntax (the +: operator) to force an AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] entry to be
a list even if only one element was matched. The value for named
elements that were not found during the parse (perhaps because they are
optional) is None.

When the parseinfo=True keyword argument has been passed to the
Parser constructor, a parseinfo element is added to AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] nodes
that are dict-like. The element contains a collections.namedtuple
with the parse information for the node:

ParseInfo = namedtuple(
 'ParseInfo',
 [
 'tokenizer',
 'rule',
 'pos',
 'endpos',
 'line',
 'endline',
]
)

With the help of the Buffer.line_info() method, it is possible to
recover the line, column, and original text parsed for the node. Note
that when ParseInfo is generated, the Buffer used during parsing
is kept in memory for the lifetime of the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree].

Generation of parseinfo can also be controlled using the
@@parseinfo :: True grammar directive.

Semantic Actions

There are no constructs for semantic actions in 竜 TatSu grammars. This
is on purpose, because semantic actions obscure the declarative nature
of grammars and provide for poor modularization from the
parser-execution perspective.

Semantic actions are defined in a class, and applied by passing an
object of the class to the parse() method of the parser as the
semantics= parameter. 竜 TatSu will invoke the method that matches
the name of the grammar rule every time the rule parses. The argument to
the method will be the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] constructed from the right-hand-side of
the rule:

class MySemantics(object):
 def some_rule_name(self, ast):
 return ''.join(ast)

 def _default(self, ast):
 pass

If there’s no method matching the rule’s name, 竜 TatSu will try to
invoke a _default() method if it’s defined:

def _default(self, ast):
 ...

Nothing will happen if neither the per-rule method nor _default()
are defined.

The per-rule methods in classes implementing the semantics provide
enough opportunity to do rule post-processing operations, like
verifications (for inadequate use of keywords as identifiers), or AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree]
transformation:

class MyLanguageSemantics(object):
 def identifier(self, ast):
 if my_lange_module.is_keyword(ast):
 raise FailedSemantics('"%s" is a keyword' % str(ast))
 return ast

For finer-grained control it is enough to declare more rules, as the
impact on the parsing times will be minimal.

If preprocessing is required at some point, it is enough to place
invocations of empty rules where appropriate:

myrule = first_part preproc {second_part} ;

preproc = () ;

The abstract parser will honor as a semantic action a method declared
as:

def preproc(self, ast):
 ...

Building Models

Naming elements in grammar rules makes the parser discard uninteresting
parts of the input, like punctuation, to produce an Abstract Syntax
Tree (AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree]) that reflects the semantic structure of what was parsed.
But an AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] doesn’t carry information about the rule that generated
it, so navigating the trees may be difficult.

竜 TatSu defines the tatsu.model.ModelBuilderSemantics semantics
class which helps construct object models from abtract syntax trees:

from tatsu.model import ModelBuilderSemantics

parser = MyParser(semantics=ModelBuilderSemantics())

Then you add the desired node type as first parameter to each grammar
rule:

addition::AddOperator = left:mulexpre '+' right:addition ;

ModelBuilderSemantics will synthesize a class AddOperator(Node):
class and use it to construct the node. The synthesized class will have
one attribute with the same name as the named elements in the rule.

You can also use Python [http://python.org]’s built-in types as node types, and
ModelBuilderSemantics will do the right thing:

integer::int = /[0-9]+/ ;

ModelBuilderSemantics acts as any other semantics class, so its
default behavior can be overidden by defining a method to handle the
result of any particular grammar rule.

Walking Models

The class tatsu.model.NodeWalker allows for the easy traversal
(walk) a model constructed with a ModelBuilderSemantics instance:

from tatsu.model import NodeWalker

class MyNodeWalker(NodeWalker):

 def walk_AddOperator(self, node):
 left = self.walk(node.left)
 right = self.walk(node.right)

 print('ADDED', left, right)

model = MyParser(semantics=ModelBuilderSemantics()).parse(input)

walker = MyNodeWalker()
walker.walk(model)

When a method with a name like walk_AddOperator() is defined, it
will be called when a node of that type is walked. The pythonic
version of the class name may also be used for the walk method:
walk__add_operator() (note the double underscore).

If a walk method for a node class is not found, then a method for the
class’s bases is searched, so it is possible to write catch-all
methods such as:

def walk_Node(self, node):
 print('Reached Node', node)

def walk_str(self, s):
 return s

def walk_object(self, o):
 raise Exception('Unexpected tyle %s walked', type(o).__name__)

Predeclared classes can be passed to ModelBuilderSemantics instances
through the types= parameter:

from mymodel import AddOperator, MulOperator

semantics=ModelBuilderSemantics(types=[AddOperator, MulOperator])

ModelBuilderSemantics assumes nothing about types=, so any
constructor (a function, or a partial function) can be used.

Model Class Hierarchies

It is possible to specify a a base class for generated model nodes:

additive
 =
 | addition
 | substraction
 ;

addition::AddOperator::Operator
 =
 left:mulexpre op:'+' right:additive
 ;

substraction::SubstractOperator::Operator
 =
 left:mulexpre op:'-' right:additive
 ;

竜 TatSu will generate the base class if it’s not already known.

Base classes can be used as the target class in walkers, and in code
generators:

class MyNodeWalker(NodeWalker):
 def walk_Operator(self, node):
 left = self.walk(node.left)
 right = self.walk(node.right)
 op = self.walk(node.op)

 print(type(node).__name__, op, left, right)

class Operator(ModelRenderer):
 template = '{left} {op} {right}'

Templates and Translation

	note

	As of 竜 TatSu 3.2.0, code generation is separated from grammar
models through tatsu.codegen.CodeGenerator as to allow for code
generation targets different from Python [http://python.org]. Still, the use of
inline templates and rendering.Renderer hasn’t changed. See the
regex example for merged modeling and code generation.

竜 TatSu doesn’t impose a way to create translators with it, but it
exposes the facilities it uses to generate the Python [http://python.org] source code for
parsers.

Translation in 竜 TatSu is template-based, but instead of defining or
using a complex templating engine (yet another language), it relies on
the simple but powerful string.Formatter of the Python [http://python.org] standard
library. The templates are simple strings that, in 竜 TatSu’s style,
are inlined with the code.

To generate a parser, 竜 TatSu constructs an object model of the parsed
grammar. A tatsu.codegen.CodeGenerator instance matches model
objects to classes that descend from tatsu.codegen.ModelRenderer and
implement the translation and rendering using string templates.
Templates are left-trimmed on whitespace, like Python [http://python.org] doc-comments
are. This is an example taken from 竜 TatSu’s source code:

class Lookahead(ModelRenderer):
 template = '''\
 with self._if():
 {exp:1::}\
 '''

Every attribute of the object that doesn’t start with an underscore
(_) may be used as a template field, and fields can be added or
modified by overriding the render_fields(fields) method. Fields
themselves are lazily rendered before being expanded by the template,
so a field may be an instance of a ModelRenderer descendant.

The rendering module defines a Formatter enhanced to support the
rendering of items in an iterable one by one. The syntax to achieve
that is:

'''
{fieldname:ind:sep:fmt}
'''

All of ind, sep, and fmt are optional, but the three
colons are not. A field specified that way will be rendered using:

indent(sep.join(fmt % render(v) for v in value), ind)

The extended format can also be used with non-iterables, in which case
the rendering will be:

indent(fmt % render(value), ind)

The default multiplier for ind is 4, but that can be overridden
using n*m (for example 3*1) in the format.

	note

	Using a newline character (\n) as separator will interfere with
left trimming and indentation of templates. To use a newline as
separator, specify it as \\n, and the renderer will understand
the intention.

Left Recursion

竜 TatSu supports direct and indirect left recursion in grammar rules using the the algorithm described by Nicolas Laurent and Kim Mens in their 2015 paper [http://norswap.com/pubs/sle2015.pdf] Parsing Expression Grammars Made Practical.

The design and implementation of left recursion was done by Vic Nightfall [https://github.com/Victorious3] with research and help by Nicolas Laurent [https://github.com/norswap] on Autumn [https://github.com/norswap/autumn], and research by Philippe Sigaud [https://github.com/PhilippeSigaud] on PEGGED [https://github.com/PhilippeSigaud/Pegged/wiki/Left-Recursion].

Left recursive rules produce left-associative parse trees (AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree]), as most users would expect,
except if some of the rules involved recurse on the right (a pending topic).

Left recursion support is enabled by default in 竜 TatSu. To disable it for a particular grammar, use the @@left_recursion directive:

@@left_recursion :: False

Warning

Not all left-recursive grammars that use the 竜 TatSu syntax are PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar] (the same happens with right-recursive grammars). The order of rules matters in PEG.

For right-recursive grammars the choices that parse the most input must come first. The same is true for left-recursive grammars.

Calc Mini Tutorial

竜 TatSu users have suggested that a simple calculator, like the one in the documentation for PLY [http://www.dabeaz.com/ply/ply.html#ply_nn22] would be useful.

Here it is.

The initial grammar

This is the original PLY [http://www.dabeaz.com/ply/ply.html#ply_nn22] grammar for arithmetic expressions:

expression : expression + term
 | expression - term
 | term

term : term * factor
 | term / factor
 | factor

factor : NUMBER
 | (expression)

And this is the input expression for testing:

3 + 5 * (10 - 20)

The Tatsu grammar

The first step is to convert the grammar to 竜 TatSu syntax and style,
add rules for lexical elements (number in this case), add a
start rule that checks for end of input, and a directive to name the
generated classes:

@@grammar::CALC

start
 =
 expression $
 ;

expression
 =
 | expression '+' term
 | expression '-' term
 | term
 ;

term
 =
 | term '*' factor
 | term '/' factor
 | factor
 ;

factor
 =
 | '(' expression ')'
 | number
 ;

number
 =
 /\d+/
 ;

Add cut expressions

Cut expressions make a parser commit to a particular option after
certain tokens have been seen. They make parsing more efficient, because
other options are not tried. They also make error messages more precise,
because errors will be reported closest to the point of failure in the
input.

@@grammar::CALC

start
 =
 expression $
 ;

expression
 =
 | expression '+' ~ term
 | expression '-' ~ term
 | term
 ;

term
 =
 | term '*' ~ factor
 | term '/' ~ factor
 | factor
 ;

factor
 =
 | '(' ~ expression ')'
 | number
 ;

number
 =
 /\d+/
 ;

Let’s save the above grammar in a file called calc_cut.ebnf.
We can now compile the grammar, and test the parser:

import json
from pprint import pprint

import tatsu

def simple_parse():
 with open('calc_cut.ebnf') as f:
 grammar = f.read()

 parser = tatsu.compile(grammar)
 ast = parser.parse('3 + 5 * (10 - 20)')

 print('# SIMPLE PARSE')
 print('# AST')
 pprint(ast, width=20, indent=4)

 print()

 print('# JSON')
 print(json.dumps(ast, indent=4))

if __name__ == '__main__':
 simple_parse()

Save the above in calc.py. This is the output:

$ python calc.py

SIMPLE PARSE
AST
['3',
 '+',
 ['5',
 '*',
 ['(',
 ['10',
 '-',
 '20'],
 ')']]]

JSON
[
 "3",
 "+",
 [
 "5",
 "*",
 [
 "(",
 [
 "10",
 "-",
 "20"
],
 ")"
]
]
]

Annotating the grammar

Dealing with AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree]s that are lists of lists leads to code that is
difficult to read, and error-prone. 竜 TatSu allows naming the elements
in a rule to produce more humanly-readable AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree]s and to allow for
clearer semantics code. This is an annotated version of the grammar:

@@grammar::CALC

start
 =
 expression $
 ;

expression
 =
 | left:expression op:'+' ~ right:term
 | left:expression op:'-' ~ right:term
 | term
 ;

term
 =
 | left:term op:'*' ~ right:factor
 | left:term '/' ~ right:factor
 | factor
 ;

factor
 =
 | '(' ~ @:expression ')'
 | number
 ;

number
 =
 /\d+/
 ;

Save the annotated grammar in calc_annotated.ebnf, change
the grammar filename in calc.py and re-execute it to get the resulting AST:

ANNOTATED AST
{ 'left': '3',
 'op': '+',
 'right': { 'left': '5',
 'op': '*',
 'right': { 'left': '10',
 'op': '-',
 'right': '20'}}}

Semantics

Semantic actions for 竜 TatSu parsers are not specified in the grammar, but in a separate semantics class.

from pprint import pprint

import tatsu
from tatsu.ast import AST

class CalcBasicSemantics(object):
 def number(self, ast):
 return int(ast)

 def term(self, ast):
 if not isinstance(ast, AST):
 return ast
 elif ast.op == '*':
 return ast.left * ast.right
 elif ast.op == '/':
 return ast.left / ast.right
 else:
 raise Exception('Unknown operator', ast.op)

 def expression(self, ast):
 if not isinstance(ast, AST):
 return ast
 elif ast.op == '+':
 return ast.left + ast.right
 elif ast.op == '-':
 return ast.left - ast.right
 else:
 raise Exception('Unknown operator', ast.op)

def parse_with_basic_semantics():
 with open('calc_annotated.ebnf') as f:
 grammar = f.read()

 parser = tatsu.compile(grammar)
 ast = parser.parse(
 '3 + 5 * (10 - 20)',
 semantics=CalcBasicSemantics()
)

 print('# BASIC SEMANTICS RESULT')
 pprint(ast, width=20, indent=4)

if __name__ == '__main__':
 parse_with_basic_semantics()

Save the above in calc_semantics.py and execute it with python calc_semantics.py.
The result is:

BASIC SEMANTICS RESULT
-47

One rule per expression type

Having semantic actions determine what was parsed with isinstance() or querying the AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree] for operators is not very pythonic, nor object oriented, and it leads to code that’s more difficult to maintain. It’s preferable to have one rule per expression kind, something that will be necessary if we want to build object models to use walkers and code generation.

@@grammar::CALC

start
 =
 expression $
 ;

expression
 =
 | addition
 | subtraction
 | term
 ;

addition
 =
 left:expression op:'+' ~ right:term
 ;

subtraction
 =
 left:expression op:'-' ~ right:term
 ;

term
 =
 | multiplication
 | division
 | factor
 ;

multiplication
 =
 left:term op:'*' ~ right:factor
 ;

division
 =
 left:term '/' ~ right:factor
 ;

factor
 =
 | '(' ~ @:expression ')'
 | number
 ;

number
 =
 /\d+/
 ;

Save the above in calc_refactored.ebnf.

from pprint import pprint

import tatsu

class CalcSemantics(object):
 def number(self, ast):
 return int(ast)

 def addition(self, ast):
 return ast.left + ast.right

 def subtraction(self, ast):
 return ast.left - ast.right

 def multiplication(self, ast):
 return ast.left * ast.right

 def division(self, ast):
 return ast.left / ast.right

def parse_refactored():
 with open('calc_refactored.ebnf') as f:
 grammar = f.read()

 parser = tatsu.compile(grammar)
 ast = parser.parse(
 '3 + 5 * (10 - 20)',
 semantics=CalcSemantics()
)

 print('# REFACTORED SEMANTICS RESULT')
 pprint(ast, width=20, indent=4)
 print()

if __name__ == '__main__':
 parse_refactored()

The semantics implementation is simpler, and the results are the same:

REFACTORED SEMANTICS RESULT
-47

Object models

Binding semantics to grammar rules is powerful and versatile, but this
approach risks tying the semantics to the parsing process, rather than
to the parsed objects.

That is not a problem for simple languages, like the arithmetic expression language in this tutorial. But as the complexity of the parsed language increases, the number of grammar rules quickly becomes larger than the types of objects parsed.

竜 TatSu can create typed object models directly from the parsing process which can be navigated (walked) and transformed (with code generation) in later passes.

The first step to create an object model is to annotate the rule names with the desired class names:

@@grammar::Calc

start
 =
 expression $
 ;

expression
 =
 | addition
 | subtraction
 | term
 ;

addition::Add
 =
 left:term op:'+' ~ right:expression
 ;

subtraction::Subtract
 =
 left:term op:'-' ~ right:expression
 ;

term
 =
 | multiplication
 | division
 | factor
 ;

multiplication::Multiply
 =
 left:factor op:'*' ~ right:term
 ;

division::Divide
 =
 left:factor '/' ~ right:term
 ;

factor
 =
 | subexpression
 | number
 ;

subexpression
 =
 '(' ~ @:expression ')'
 ;

number::int
 =
 /\d+/
 ;

Save the grammar in a file name calc_model.ebnf.

The tatsu.objectmodel.Node descendants are synthetized at runtime using tatsu.semantics.ModelBuilderSemantics.

This is how the model looks like when generated with the tatsu.to_python_model()
function or from the command line with tatsu --object-model calc_model.ebnf -G calc_semantics_model.py:

from tatsu.objectmodel import Node
from tatsu.semantics import ModelBuilderSemantics

class ModelBase(Node):
pass

class CalcModelBuilderSemantics(ModelBuilderSemantics):
 def __init__(self, context=None, types=None):
 types = [
 t for t in globals().values()
 if type(t) is type and issubclass(t, ModelBase)
] + (types or [])
 super(CalcModelBuilderSemantics, self).__init__(context=context, types=types)

class Add(ModelBase):
 left = None
 op = None
 right = None

class Subtract(ModelBase):
 left = None
 op = None
 right = None

class Multiply(ModelBase):
 left = None
 op = None
 right = None

class Divide(ModelBase):
 left = None
 right = None

The model that results from a parse can be printed, and walked:

import tatsu
from tatsu.walkers import NodeWalker

class CalcWalker(NodeWalker):
 def walk_object(self, node):
 return node

 def walk__add(self, node):
 return self.walk(node.left) + self.walk(node.right)

 def walk__subtract(self, node):
 return self.walk(node.left) - self.walk(node.right)

 def walk__multiply(self, node):
 return self.walk(node.left) * self.walk(node.right)

 def walk__divide(self, node):
 return self.walk(node.left) / self.walk(node.right)

def parse_and_walk_model():
 with open('calc_model.ebnf') as f:
 grammar = f.read()

 parser = tatsu.compile(grammar, asmodel=True)
 model = parser.parse('3 + 5 * (10 - 20)')

 print('# WALKER RESULT IS:')
 print(CalcWalker().walk(model))
 print()

if __name__ == '__main__':
 parse_and_walk_model()

Save the above program in calc_model.py and execute it to get this result:

WALKER RESULT IS:
-47

Code Generation

Translation is one of the most common tasks in language processing.
Analysis often sumarizes the parsed input, and walkers are good for that.
In translation, the output can often be as verbose as the input, so a systematic approach that avoids bookkeeping as much as possible is convenient.

竜 TatSu provides support for template-based code generation (translation) in the tatsu.codegen module.
Code generation works by defining a translation class for each class in the model specified by the grammar.

Adjust our previous calc_model.ebnf grammar and annotate the number rule
like so:

number::Number
 =
 value:/\d+/
 ;

The following code generator translates input expressions to the postfix instructions of a stack-based processor:

import sys

from tatsu.codegen import ModelRenderer
from tatsu.codegen import CodeGenerator

THIS_MODULE = sys.modules[__name__]

class PostfixCodeGenerator(CodeGenerator):
 def __init__(self):
 super().__init__(modules=[THIS_MODULE])

class Number(ModelRenderer):
 template = '''\
 PUSH {value}'''

class Add(ModelRenderer):
 template = '''\
 {left}
 {right}
 ADD'''

class Subtract(ModelRenderer):
 template = '''\
 {left}
 {right}
 SUB'''

class Multiply(ModelRenderer):
 template = '''\
 {left}
 {right}
 MUL'''

class Divide(ModelRenderer):
 template = '''\
 {left}
 {right}
 DIV'''

Save the above in codegen.py.
The code generator can be used as follows:

from codegen import PostfixCodeGenerator

def parse_and_translate():
 with open('calc_model.ebnf') as f:
 grammar = f.read()

 parser = tatsu.compile(grammar, asmodel=True)
 model = parser.parse('3 + 5 * (10 - 20)')

 postfix = PostfixCodeGenerator().render(model)

 print('# TRANSLATED TO POSTFIX')
 print(postfix)

if __name__ == '__main__':
 parse_and_translate()

Save the above program in calc_translate.py and execute it to get this result:

TRANSLATED TO POSTFIX
PUSH 3
PUSH 5
PUSH 10
PUSH 20
SUB
MUL
ADD

Traces

竜 TatSu compiling and parsing actions have a trace= argument (--trace on the command line). When used with the colorize= option (--color on the command line), it produces trace like the following, in which colors mean try, suceed, and fail.

↙start ~1:1

3 + 5 * (10 - 20)

↙expression↙start ~1:1

3 + 5 * (10 - 20)

↙expression↙expression↙start ~1:1

3 + 5 * (10 - 20)

⟲ expression↙expression↙start ~1:1

3 + 5 * (10 - 20)

↙expression↙expression↙start ~1:1

3 + 5 * (10 - 20)

⟲ expression↙expression↙start ~1:1

3 + 5 * (10 - 20)

↙term↙expression↙start ~1:1

3 + 5 * (10 - 20)

↙term↙term↙expression↙start ~1:1

3 + 5 * (10 - 20)

⟲ term↙term↙expression↙start ~1:1

3 + 5 * (10 - 20)

↙term↙term↙expression↙start ~1:1

3 + 5 * (10 - 20)

⟲ term↙term↙expression↙start ~1:1

3 + 5 * (10 - 20)

↙factor↙term↙expression↙start ~1:1

3 + 5 * (10 - 20)

≢’(’ ~1:1

3 + 5 * (10 - 20)

↙number↙factor↙term↙expression↙start ~1:1

3 + 5 * (10 - 20)

≡’3’ /d+/ ~1:2

+ 5 * (10 - 20)

≡number↙factor↙term↙expression↙start ~1:2

+ 5 * (10 - 20)

≡factor↙term↙expression↙start ~1:2

+ 5 * (10 - 20)

↙term↙term↙expression↙start ~1:3

+ 5 * (10 - 20)

≡term↙term↙expression↙start ~1:3

+ 5 * (10 - 20)

≢’*’ ~1:3

+ 5 * (10 - 20)

↙term↙term↙expression↙start ~1:3

+ 5 * (10 - 20)

≡term↙term↙expression↙start ~1:3

+ 5 * (10 - 20)

≢’/’ ~1:3

+ 5 * (10 - 20)

↙factor↙term↙expression↙start ~1:3

+ 5 * (10 - 20)

≢’(’ ~1:3

+ 5 * (10 - 20)

↙number↙factor↙term↙expression↙start ~1:3

+ 5 * (10 - 20)

≢’’ /d+/ ~1:3

+ 5 * (10 - 20)

≢factor↙term↙expression↙start ~1:3

+ 5 * (10 - 20)

≡term↙expression↙start ~1:2

+ 5 * (10 - 20)

↙expression↙expression↙start ~1:3

+ 5 * (10 - 20)

≡expression↙expression↙start ~1:3

+ 5 * (10 - 20)

≡’+’ ~1:4

5 * (10 - 20)

↙term↙expression↙start ~1:4

5 * (10 - 20)

↙term↙term↙expression↙start ~1:5

5 * (10 - 20)

⟲ term↙term↙expression↙start ~1:5

5 * (10 - 20)

↙term↙term↙expression↙start ~1:5

5 * (10 - 20)

⟲ term↙term↙expression↙start ~1:5

5 * (10 - 20)

↙factor↙term↙expression↙start ~1:5

5 * (10 - 20)

≢’(’ ~1:5

5 * (10 - 20)

↙number↙factor↙term↙expression↙start ~1:5

5 * (10 - 20)

≡’5’ /d+/ ~1:6

* (10 - 20)

≡number↙factor↙term↙expression↙start ~1:6

* (10 - 20)

≡factor↙term↙expression↙start ~1:6

* (10 - 20)

↙term↙term↙expression↙start ~1:7

* (10 - 20)

≡term↙term↙expression↙start ~1:7

* (10 - 20)

≡’*’ ~1:8

(10 - 20)

↙factor↙term↙expression↙start ~1:8

(10 - 20)

≡’(’ ~1:10

10 - 20)

↙expression↙factor↙term↙expression↙start ~1:10

10 - 20)

↙expression↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

⟲ expression↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

↙expression↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

⟲ expression↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

↙term↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

↙term↙term↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

⟲ term↙term↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

↙term↙term↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

⟲ term↙term↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

↙factor↙term↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

≢’(’ ~1:11

10 - 20)

↙number↙factor↙term↙expression↙factor↙term↙expression↙start ~1:11

10 - 20)

≡’10’ /d+/ ~1:13

- 20)

≡number↙factor↙term↙expression↙factor↙term↙expression↙start ~1:13

- 20)

≡factor↙term↙expression↙factor↙term↙expression↙start ~1:13

- 20)

↙term↙term↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≡term↙term↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≢’*’ ~1:14

- 20)

↙term↙term↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≡term↙term↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≢’/’ ~1:14

- 20)

↙factor↙term↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≢’(’ ~1:14

- 20)

↙number↙factor↙term↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≢’’ /d+/ ~1:14

- 20)

≢factor↙term↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≡term↙expression↙factor↙term↙expression↙start ~1:13

- 20)

↙expression↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≡expression↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≢’+’ ~1:14

- 20)

↙expression↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≡expression↙expression↙factor↙term↙expression↙start ~1:14

- 20)

≡’-’ ~1:15

20)

↙term↙expression↙factor↙term↙expression↙start ~1:15

20)

↙term↙term↙expression↙factor↙term↙expression↙start ~1:16

20)

⟲ term↙term↙expression↙factor↙term↙expression↙start ~1:16

20)

↙term↙term↙expression↙factor↙term↙expression↙start ~1:16

20)

⟲ term↙term↙expression↙factor↙term↙expression↙start ~1:16

20)

↙factor↙term↙expression↙factor↙term↙expression↙start ~1:16

20)

≢’(’ ~1:16

20)

↙number↙factor↙term↙expression↙factor↙term↙expression↙start ~1:16

20)

≡’20’ /d+/ ~1:18

)

≡number↙factor↙term↙expression↙factor↙term↙expression↙start ~1:18

)

≡factor↙term↙expression↙factor↙term↙expression↙start ~1:18

)

↙term↙term↙expression↙factor↙term↙expression↙start ~1:19

)

≡term↙term↙expression↙factor↙term↙expression↙start ~1:19

)

≢’*’ ~1:19

)

↙term↙term↙expression↙factor↙term↙expression↙start ~1:19

)

≡term↙term↙expression↙factor↙term↙expression↙start ~1:19

)

≢’/’ ~1:19

)

↙factor↙term↙expression↙factor↙term↙expression↙start ~1:19

)

≢’(’ ~1:19

)

↙number↙factor↙term↙expression↙factor↙term↙expression↙start ~1:19

)

≢’’ /d+/ ~1:19

)

≢factor↙term↙expression↙factor↙term↙expression↙start ~1:19

)

≡term↙expression↙factor↙term↙expression↙start ~1:18

)

↙expression↙expression↙factor↙term↙expression↙start ~1:19

)

≡expression↙expression↙factor↙term↙expression↙start ~1:19

)

≢’+’ ~1:19

)

↙expression↙expression↙factor↙term↙expression↙start ~1:19

)

≡expression↙expression↙factor↙term↙expression↙start ~1:19

)

≢’-’ ~1:19

)

↙term↙expression↙factor↙term↙expression↙start ~1:19

)

≢term↙expression↙factor↙term↙expression↙start ~1:19

)

≡expression↙factor↙term↙expression↙start ~1:18

)

≡’)’

≡factor↙term↙expression↙start

↙term↙term↙expression↙start

≡term↙term↙expression↙start

≢’*’

↙term↙term↙expression↙start

≡term↙term↙expression↙start

≢’/’

↙factor↙term↙expression↙start

≢’(’

↙number↙factor↙term↙expression↙start

≢’’ /d+/

≢factor↙term↙expression↙start

≡term↙expression↙start

↙expression↙expression↙start

≡expression↙expression↙start

≢’+’

↙expression↙expression↙start

≡expression↙expression↙start

≢’-’

↙term↙expression↙start

≢term↙expression↙start

≡expression↙start

≡start

Grako Compatibility

竜 TatSu is routinely tested over major projects developed with Grako [https://pypi.python.org/pypi/grako/]. The
backwards-compatibility suite includes (at least) translators for COBOL [https://en.wikipedia.org/wiki/COBOL], Java [https://en.wikipedia.org/wiki/Java], and (Oracle) SQL [https://en.wikipedia.org/wiki/SQL].

Grako [https://pypi.python.org/pypi/grako/] grammars and projects can be used with 竜 TatSu, with these caveats:

	The Python [http://python.org] module name changed to tatsu.

	ignorecase no longer applies to regular expressions in grammars. Use (?i) in the pattern to enable re.IGNORECASE

	Left recursion is enabled by default because it works and has zero impact on non-recursive grammars.

	Deprecated grammar syntax is no longer documented. It’s best not to use it, as it will be removed in a future version of 竜 TatSu.

Using ANTLR Grammars

ANTLR [http://www.antlr.org/] is one of the best known parser genrators, and it has an important collection of grammars [https://github.com/antlr/grammars-v4]. The tatsu.g2e module can translate an ANTLR [http://www.antlr.org/] grammar to the syntax used by 竜 TatSu.

The resulting grammar won’t be immediately usable. It will have to be edited to make it abide to PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar] semantics, and in general be adapted to the way things are done with 竜 TatSu.

To use g2e as a module, invoke one of its translation functions.

def translate(text=None, filename=None, name=None, encoding='utf-8', trace=False):

For example:

from tatsu import g2e

tatsu_grammar = translate(filename='mygrammar.g', name='My')
with open('my.ebnf') as f:
 f.write(tatsu_grammar)

g2e can also be used from the command line:

$ python -m tatsu.g2e mygrammar.g > my.ebnf

Examples

Tatsu

The file grammar/tatsu.ebnf contains a grammar for the 竜 TatSu grammar
language written in its own grammar language. It is used in the
bootstrap test suite to prove that 竜 TatSu can generate a parser to
parse its own language, and the resulting parser is made the bootstrap
parser every time 竜 TatSu is stable (see tatsu/bootstrap.py for
the generated parser).

竜 TatSu uses 竜 TatSu to translate grammars into parsers, so it is a
good example of end-to-end translation.

Calc

The project examples/calc implements a calculator for simple
expressions, and is written as a tutorial over most of the features
provided by 竜 TatSu.

g2e

The project examples/g2e contains an example ANTLR [http://www.antlr.org/] to 竜 TatSu grammar
translation. The project is a good example of the use g2e. It generates the
竜 TatSu grammar on standard output, but because the model used is
竜 TatSu’s own, the same code can be used to directly generate a parser
from any ANTLR [http://www.antlr.org/] grammar. Please take a look at the examples README to
know about limitations.

Support

For general Q&A, please use the [tatsu] tag on StackOverflow [http://stackoverflow.com/tags/tatsu/info].

Credits

	竜 TatSu is the successor of Grako [https://pypi.python.org/pypi/grako/], which was built by Juancarlo Añez and funded by Thomas Bragg to do analysis and translation of programs written in legacy programming languages.

	Niklaus Wirth was the chief designer of the programming languages
Euler [http://en.wikipedia.org/wiki/Euler_programming_language], Algol W [http://en.wikipedia.org/wiki/Algol_W], Pascal [http://en.wikipedia.org/wiki/Pascal_programming_language], Modula [http://en.wikipedia.org/wiki/Modula], Modula-2 [http://en.wikipedia.org/wiki/Modula-2], Oberon [http://en.wikipedia.org/wiki/Oberon_(programming_language)],
and Oberon-2 [http://en.wikipedia.org/wiki/Oberon-2]. In the last chapter of his 1976 book Algorithms +
Data Structures = Programs [http://www.amazon.com/Algorithms-Structures-Prentice-Hall-Automatic-Computation/dp/0130224189/], Wirth [http://en.wikipedia.org/wiki/Niklaus_Wirth] creates a top-down, descent
parser with recovery for the Pascal [http://en.wikipedia.org/wiki/Pascal_programming_language]-like, LL(1) [http://en.wikipedia.org/wiki/LL(1)] programming
language PL/0 [http://en.wikipedia.org/wiki/PL/0]. The structure of the program is that of a PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar]
parser, though the concept of PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar] wasn’t formalized until 2004.

	Bryan Ford introduced [http://dl.acm.org/citation.cfm?id=964001.964011] PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar] (parsing expression grammars) in
2004.

	Other parser generators like PEG.js [http://pegjs.majda.cz/] by David Majda inspired
the work in 竜 TatSu.

	William Thompson inspired the use of context managers with his
blog post [http://dietbuddha.blogspot.com/2012/12/52python-encapsulating-exceptions-with.html] that I knew about through the invaluable Python
Weekly [http://www.pythonweekly.com/] newsletter, curated by Rahul Chaudhary

	Jeff Knupp explains why 竜 TatSu’s use of exceptions [http://www.jeffknupp.com/blog/2013/02/06/write-cleaner-python-use-exceptions/] is
sound, so I don’t have to.

	Terence Parr created ANTLR [http://www.antlr.org/], probably the most solid and
professional parser generator out there. Ter, ANTLR, and the
folks on the ANLTR forums helped me shape my ideas about 竜 TatSu.

	JavaCC (originally Jack [http://en.wikipedia.org/wiki/Javacc]) looks like an abandoned project. It
was the first parser generator I used while teaching.

	竜 TatSu is very fast. But dealing with millions of lines of legacy
source code in a matter of minutes would be impossible without
PyPy [http://pypy.org/], the work of Armin Rigo and the PyPy team [http://pypy.org/people.html].

	Guido van Rossum created and has lead the development of the
Python [http://python.org] programming environment for over a decade. A tool like
竜 TatSu, at under 10K lines of code, would not have been
possible without Python [http://python.org].

	Kota Mizushima welcomed me to the CSAIL at MIT [http://www.csail.mit.edu/] PEG and
Packrat parsing mailing list [https://lists.csail.mit.edu/mailman/listinfo/peg], and immediately offered ideas and
pointed me to documentation about the implementation of cut in
modern parsers. The optimization of memoization information in
竜 TatSu is thanks to one of his papers.

	My students at UCAB [http://www.ucab.edu.ve/] inspired me to think about how
grammar-based parser generation could be made more approachable.

	Gustavo Lau was my professor of Language Theory at USB [http://www.usb.ve/], and
he was kind enough to be my tutor in a thesis project on programming
languages that was more than I could chew. My peers, and then
teaching advisers Alberto Torres, and Enzo Chiariotti formed
a team with Gustavo to challenge us with programming languages
like LATORTA and term exams that went well into the eight hours.
And, of course, there was also the pirate patch that should be worn
on the left or right eye depending on the LL or LR challenge.

	Manuel Rey led me through another, unfinished, thesis project
that taught me about what languages (spoken languages in general, and
programming languages in particular) are about. I learned why
languages use declensions [http://en.wikipedia.org/wiki/Declension], and why, although the underlying words
are in English [http://en.wikipedia.org/wiki/English_grammar], the structure of the programs we write is more
like Japanese [http://en.wikipedia.org/wiki/Japanese_grammar].

	Marcus Brinkmann [https://bitbucket.org/lambdafu/] has kindly submitted patches that have resolved
obscure bugs in 竜 TatSu’s implementation, and that have made the
tool more user-friendly, specially for newcomers to parsing and
translation.

	Robert Speer [https://bitbucket.org/r_speer] cleaned up the nonsense in trying to have Unicode
handling be compatible with 2.7.x and 3.x, and figured out the
canonical way of honoring escape sequences in grammar tokens without
throwing off the encoding.

	Basel Shishani [https://bitbucket.org/basel-shishani] has been an incredibly throrough peer-reviewer of
竜 TatSu.

	Paul Sargent [https://bitbucket.org/pauls] implemented Warth et al [http://www.vpri.org/pdf/tr2007002_packrat.pdf]’s algorithm for supporting
direct and indirect left recursion in PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar] parsers.

	Kathryn Long [https://bitbucket.org/starkat] proposed better support for UNICODE in the treatment
of whitespace and regular expressions (patterns) in general. Her
other contributions have made 竜 TatSu more congruent, and more
user-friendly.

	David Röthlisberger [https://bitbucket.org/drothlis/] provided the definitive patch that allows the
use of Python [http://python.org] keywords as rule names.

	Nicolas Laurent [https://github.com/norswap] researched, designed, implemented, and published the left recursion algorithm used in 竜 TatSu.

	Vic Nightfall [https://github.com/Victorious3] designed and coded an implementation of left recursion that handles all the use cases of interest (see the Left Recursion topic for details). He was gentle enough to kindly take over management of the 竜 TatSu project since 2019.

Contributors

The following, among others, have contributed to 竜 TatSu with
features, but reports, bug fixes, or suggestions:

Alberto Berti [https://github.com/azazel75],
Andy Wright [https://github.com/acw1251],
Basel Shishani [https://bitbucket.org/basel-shishani],
David Chen [https://github.com/davidchen],
David Delassus [https://bitbucket.org/linkdd],
David Röthlisberger [https://bitbucket.org/drothlis/],
David Sanders [https://github.com/davesque],
Dmytro Ivanov [https://bitbucket.org/jimon],
Felipe [https://github.com/fcoelho],
Franck Pommereau [https://github.com/fpom],
Franklin Lee [https://bitbucket.org/leewz],
Gabriele Paganelli [https://bitbucket.org/gapag],
Guido van Rossum [https://github.com/gvanrossum],
Jack Taylor [https://github.com/rayjolt],
Kathryn Long [https://bitbucket.org/starkat],
Karthikeyan Singaravelan [https://github.com/tirkarthi],
Manuel Jacob [https://github.com/manueljacob],
Marcus Brinkmann [https://bitbucket.org/lambdafu/],
Mark Jason Dominus [https://github.com/mjdominus],
Max Liebkies [https://bitbucket.org/gegenschall],
Michael Noronha [https://github.com/mtn],
Nicholas Bishop [https://github.com/nicholasbishop],
Nicolas Laurent [https://github.com/norswap],
Nils-Hero Lindemann [https://github.com/heronils],
Oleg Komarov [https://github.com/okomarov],
Paul Houle [https://github.com/paulhoule],
Paul Sargent [https://bitbucket.org/pauls],
Robert Speer [https://bitbucket.org/r_speer],
Ryan [https://github.com/r-chaves],
Ryan Gonzales [https://github.com/kirbyfan64],
Ruth-Polymnia [https://github.com/Ruth-Polymnia],
S Brown [https://bitbucket.org/sjbrownBitbucket],
Tonico Strasser [https://bitbucket.org/tonico_strasser],
Vic Nightfall [https://github.com/Victorious3],
Victor Uriarte [https://bitbucket.org/vmuriart],
Vinay Sajip [https://bitbucket.org/vinay.sajip],
franz_g [https://bitbucket.org/franz_g],
gkimbar [https://bitbucket.org/gkimbar],
nehz [https://bitbucket.org/nehz] ,
neumond [https://bitbucket.org/neumond],
pdw-mb [https://bitbucket.org/pdw-mb],
pgebhard [https://bitbucket.org/pgebhard],
siemer [https://bitbucket.org/siemer]

Contributing

竜 TatSu development is done on Github [https://github.com/neogeny/TatSu]. Bug reports, patches, suggestions, and improvements are welcome.

Donations

[image: donate] [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=2TW56SV6WNJV6]

If you’d like to contribute to the future development of 竜 TatSu,
please make a donation [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=2TW56SV6WNJV6] to the project.

Some of the planned new features are: grammar expressions for left
and right associativity, new algorithms for left-recursion, a
unified intermediate model for parsing and translating programming
languages, and more…

License

TATSU - A PEG/Packrat parser generator for Python

Copyright (C) 2017-2019 Juancarlo Añez
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

 _static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/images/btn_donate_SM.gif
Y
Donate...,

nav.xhtml

 Table of Contents

 		
 竜 TatSu

 		
 Introduction

 		
 Rationale

 		
 Installation

 		
 Using the Tool

 		
 As a Library

 		
 Compiling grammars to Python

 		
 The Generated Parsers

 		
 Using the Generated Parser

 		
 Grammar Syntax

 		
 Rules

 		
 Expressions

 		
 # comment

 		
 e1 | e2

 		
 e1 e2

 		
 (e)

 		
 [e]

 		
 { e } or { e }*

 		
 { e }+

 		
 {}

 		
 ~

 		
 s%{ e }+

 		
 s%{ e } or s%{ e }*

 		
 op<{ e }+

 		
 op>{ e }+

 		
 s.{ e }+

 		
 s.{ e } or s.{ e }*

 		
 &e

 		
 !e

 		
 'text' or “text”

 		
 r'text' or r”text”

 		
 ?”regexp” or ?'regexp' or /regexp/

 		
 /./

 		
 ->e

 		
 `constant`

 		
 rulename

 		
 >rulename

 		
 ()

 		
 !()

 		
 name:e

 		
 name+:e

 		
 @:e

 		
 @+:e

 		
 $

 		
 Rules with Arguments

 		
 Based Rules

 		
 Memoization

 		
 Rule Overrides

 		
 Grammar Name

 		
 Whitespace

 		
 Case Sensitivity

 		
 Comments

 		
 Reserved Words and Keywords

 		
 Include Directive

 		
 Left Recursion

 		
 Grammar Directives

 		
 @@grammar :: <word>

 		
 @@comments :: <regexp>

 		
 @@eol_comments :: <regexp>

 		
 @@ignorecase :: <bool>

 		
 @@keyword :: {<word>|<string>}+

 		
 @@left_recursion :: <bool>

 		
 @@namechars :: <string>

 		
 @@nameguard :: <bool>

 		
 @@parseinfo :: <bool>

 		
 @@whitespace :: <regexp>

 		
 Abstract Syntax Trees (ASTs)

 		
 Semantic Actions

 		
 Building Models

 		
 Walking Models

 		
 Model Class Hierarchies

 		
 Templates and Translation

 		
 Left Recursion

 		
 Calc Mini Tutorial

 		
 The initial grammar

 		
 The Tatsu grammar

 		
 Add cut expressions

 		
 Annotating the grammar

 		
 Semantics

 		
 One rule per expression type

 		
 Object models

 		
 Code Generation

 		
 Traces

 		
 Grako Compatibility

 		
 Using ANTLR Grammars

 		
 Examples

 		
 Tatsu

 		
 Calc

 		
 g2e

 		
 Support

 		
 Credits

 		
 Contributors

 		
 Contributing

 		
 Donations

 		
 License

_static/up.png

_static/comment-bright.png

_images/btn_donate_SM.gif
Y
Donate...,

_static/ajax-loader.gif

_static/comment-close.png

