
TatSu Documentation
Release 5.6.1

Juancarlo Añez

Jul 03, 2021

Contents

1 Introduction 3

2 Rationale 5

3 Installation 7

4 Using the Tool 9
4.1 As a Library . 9
4.2 Compiling grammars to Python . 11
4.3 The Generated Parsers . 12
4.4 Using the Generated Parser . 13

5 Grammar Syntax 15
5.1 Rules . 15
5.2 Expressions . 16
5.3 Rules with Arguments . 22
5.4 Based Rules . 22
5.5 Memoization . 23
5.6 Rule Overrides . 23
5.7 Grammar Name . 23
5.8 Whitespace . 24
5.9 Case Sensitivity . 24
5.10 Comments . 24
5.11 Reserved Words and Keywords . 25
5.12 Include Directive . 25
5.13 Left Recursion . 25

6 Grammar Directives 27
6.1 @@grammar :: <word> . 27
6.2 @@comments :: <regexp> . 27
6.3 @@eol_comments :: <regexp> . 27
6.4 @@ignorecase :: <bool> . 28
6.5 @@keyword :: {<word>|<string>}+ . 28
6.6 @@left_recursion :: <bool> . 28
6.7 @@namechars :: <string> . 28
6.8 @@nameguard :: <bool> . 28
6.9 @@parseinfo :: <bool> . 28

i

6.10 @@whitespace :: <regexp> . 29

7 Abstract Syntax Trees (ASTs) 31

8 Semantic Actions 33

9 Building Models 35
9.1 Walking Models . 35
9.2 Model Class Hierarchies . 36

10 Templates and Translation 39

11 Left Recursion 41

12 Calc Mini Tutorial 43
12.1 The initial grammar . 43
12.2 The Tatsu grammar . 43
12.3 Add cut expressions . 44
12.4 Annotating the grammar . 46
12.5 Semantics . 47
12.6 One rule per expression type . 48
12.7 Object models . 50
12.8 Code Generation . 53

13 Traces 57

14 Grako Compatibility 63

15 Using ANTLR Grammars 65

16 Examples 67
16.1 Tatsu . 67
16.2 Calc . 67
16.3 g2e . 67

17 Support 69

18 Credits 71

19 Contributors 73

20 Contributing 75
20.1 Donations . 75

21 License 77

ii

TatSu Documentation, Release 5.6.1

At least for the people who send me mail about a new language that they’re designing, the general advice
is: do it to learn about how to write a compiler. Don’t have any expectations that anyone will use it,
unless you hook up with some sort of organization in a position to push it hard. It’s a lottery, and some
can buy a lot of the tickets. There are plenty of beautiful languages (more beautiful than C) that didn’t
catch on. But someone does win the lottery, and doing a language at least teaches you something.

Dennis Ritchie (1941-2011) Creator of the C programming language and of Unix

TatSu is a tool that takes grammars in a variation of EBNF as input, and outputs memoizing (Packrat) PEG parsers in
Python.

TatSu can compile a grammar stored in a string into a tatsu.grammars.Grammar object that can be used to
parse any given input, much like the re module does with regular expressions, or it can generate a Python module that
implements the parser.

TatSu supports left-recursive rules in PEG grammars, and it honors left-associativity in the resulting parse trees.

Contents 1

http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/C_language
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Ebnf
http://en.wikipedia.org/wiki/Memoization
http://bford.info/packrat/
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://python.org
https://docs.python.org/3.4/library/re.html
http://python.org
https://en.wikipedia.org/wiki/Left_recursion
http://en.wikipedia.org/wiki/Parsing_expression_grammar

TatSu Documentation, Release 5.6.1

2 Contents

CHAPTER 1

Introduction

TatSu is different from other PEG parser generators:

• Generated parsers use Python’s very efficient exception-handling system to backtrack. TatSu generated parsers
simply assert what must be parsed. There are no complicated if-then-else sequences for decision making or
backtracking. Memoization allows going over the same input sequence several times in linear time.

• Positive and negative lookaheads, and the cut element (with its cleaning of the memoization cache) allow for
additional, hand-crafted optimizations at the grammar level.

• Delegation to Python’s re module for lexemes allows for (Perl-like) powerful and efficient lexical analysis.

• The use of Python’s context managers considerably reduces the size of the generated parsers for code clarity,
and enhanced CPU-cache hits.

• Include files, rule inheritance, and rule inclusion give TatSu grammars considerable expressive power.

• Automatic generation of Abstract Syntax Trees_ and Object Models, along with Model Walkers and Code Gen-
erators make analysis and translation approachable

The parser generator, the run-time support, and the generated parsers have measurably low Cyclomatic complexity.
At around 5 KLOC of Python, it is possible to study all its source code in a single session.

The only dependencies are on the Python standard library, yet the regex library will be used if installed, and colorama
will be used on trace output if available. pygraphviz is required for generating diagrams.

TatSu is feature-complete and currently being used with complex grammars to parse, analyze, and translate hundreds
of thousands of lines of input text, including source code in several programming languages.

3

http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://python.org
http://python.org
https://docs.python.org/3.4/library/re.html
http://www.perl.org/
http://python.org
http://docs.python.org/2/library/contextlib.html
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/KLOC
http://python.org
http://python.org
https://pypi.python.org/pypi/regex
https://pypi.python.org/pypi/colorama/
https://pypi.python.org/pypi/pygraphviz

TatSu Documentation, Release 5.6.1

4 Chapter 1. Introduction

CHAPTER 2

Rationale

TatSu was created to address some recurring problems encountered over decades of working with parser generation
tools:

• Some programming languages allow the use of keywords as identifiers, or have different meanings for symbols
depending on context (Ruby). A parser needs control of lexical analysis to be able to handle those languages.

• LL and LR grammars become contaminated with myriads of lookahead statements to deal with ambiguous
constructs in the source language. PEG parsers address ambiguity from the onset.

• Separating the grammar from the code that implements the semantics, and using a variation of a well-known
grammar syntax (EBNF) allows for full declarative power in language descriptions. General-purpose program-
ming languages are not up to the task.

• Semantic actions do not belong in a grammar. They create yet another programming language to deal with
when doing parsing and translation: the source language, the grammar language, the semantics language, the
generated parser’s language, and the translation’s target language. Most grammar parsers do not check the
syntax of embedded semantic actions, so errors get reported at awkward moments, and against the generated
code, not against the grammar.

• Preprocessing (like dealing with includes, fixed column formats, or structure-through-indentation) belongs in
well-designed program code; not in the grammar.

• It is easy to recruit help with knowledge about a mainstream programming language like Python, but help is
hard to find for working with complex grammar-description languages. TatSu grammars are in the spirit of a
Translators and Interpreters 101 course (if something is hard to explain to a college student, it’s probably too
complicated, or not well understood).

• Generated parsers should be easy to read and debug by humans. Looking at the generated source code is
sometimes the only way to find problems in a grammar, the semantic actions, or in the parser generator itself.
It’s inconvenient to trust generated code that one cannot understand.

• Python is a great language for working with language parsing and translation.

5

http://www.ruby-lang.org/
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://en.wikipedia.org/wiki/Ebnf
http://python.org
http://python.org

TatSu Documentation, Release 5.6.1

6 Chapter 2. Rationale

CHAPTER 3

Installation

$ pip install tatsu

Warning: Versions of TatSu since 5.0.0 may require Python>=3.8. Python 2.7 is no longer supported

7

TatSu Documentation, Release 5.6.1

8 Chapter 3. Installation

CHAPTER 4

Using the Tool

4.1 As a Library

TatSu can be used as a library, much like Python’s re, by embedding grammars as strings and generating grammar
models instead of generating Python code.

• tatsu.compile(grammar, name=None, **kwargs)

Compiles the grammar and generates a model that can subsequently be used for parsing input with.

• tatsu.parse(grammar, input, start=None, **kwargs)

Compiles the grammar and parses the given input producing an AST as result. The result is equivalent to calling:

model = compile(grammar)
ast = model.parse(input)

Compiled grammars are cached for efficiency.

• tatsu.to_python_sourcecode(grammar, name=None, filename=None, **kwargs)

Compiles the grammar to the Python sourcecode that implements the parser.

• to_python_model(grammar, name=None, filename=None, **kwargs)

Compiles the grammar and generates the Python sourcecode that implements the object model defined by rule
annotations.

This is an example of how to use Tatsu as a library:

GRAMMAR = '''
@@grammar::Calc

start = expression $;

expression
=

(continues on next page)

9

http://python.org
http://python.org
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://python.org
http://python.org

TatSu Documentation, Release 5.6.1

(continued from previous page)

| term '+' ~ expression
| term '-' ~ expression
| term
;

term
=
| factor '*' ~ term
| factor '/' ~ term
| factor
;

factor
=
| '(' ~ @:expression ')'
| number
;

number = /\d+/ ;
'''

def main():
import pprint
import json
from tatsu import parse
from tatsu.util import asjson

ast = parse(GRAMMAR, '3 + 5 * (10 - 20)')
print('PPRINT')
pprint.pprint(ast, indent=2, width=20)
print()

print('JSON')
print(json.dumps(asjson(ast), indent=2))
print()

if __name__ == '__main__':
main()

And this is the output:

PPRINT
['3',

'+',
['5',
'*',
['10',

'-',
'20']]]

JSON
[

"3",
"+",
[

(continues on next page)

10 Chapter 4. Using the Tool

TatSu Documentation, Release 5.6.1

(continued from previous page)

"5",
"*",
[

"10",
"-",
"20"

]
]

]

4.2 Compiling grammars to Python

Tatsu can be run from the command line:

$ python -m tatsu

Or:

$ scripts/tatsu

Or just:

$ tatsu

if Tatsu was installed using easy_install or pip.

The -h and –help parameters provide full usage information:

$ python -m tatsu -h
usage: tatsu [--generate-parser | --draw | --object-model | --pretty]

[--color] [--trace] [--no-left-recursion] [--name NAME]
[--no-nameguard] [--outfile FILE] [--object-model-outfile FILE]
[--whitespace CHARACTERS] [--help] [--version]
GRAMMAR

TatSu takes a grammar in a variation of EBNF as input, and outputs a memoizing
PEG/Packrat parser in Python.

positional arguments:
GRAMMAR the filename of the Tatsu grammar to parse

optional arguments:
--generate-parser generate parser code from the grammar (default)
--draw, -d generate a diagram of the grammar (requires --outfile)
--object-model, -g generate object model from the class names given as

rule arguments
--pretty, -p generate a prettified version of the input grammar

parse-time options:
--color, -c use color in traces (requires the colorama library)
--trace, -t produce verbose parsing output

generation options:
--no-left-recursion, -l

(continues on next page)

4.2. Compiling grammars to Python 11

TatSu Documentation, Release 5.6.1

(continued from previous page)

turns left-recursion support off
--name NAME, -m NAME Name for the grammar (defaults to GRAMMAR base name)
--no-nameguard, -n allow tokens that are prefixes of others
--outfile FILE, --output FILE, -o FILE

output file (default is stdout)
--object-model-outfile FILE, -G FILE

generate object model and save to FILE
--whitespace CHARACTERS, -w CHARACTERS

characters to skip during parsing (use "" to disable)

common options:
--help, -h show this help message and exit
--version, -v provide version information and exit
$

4.3 The Generated Parsers

A Tatsu generated parser consists of the following classes:

• A MyLanguageBuffer class derived from tatsu.buffering.Buffer that handles the grammar defi-
nitions for whitespace, comments, and case significance.

• A MyLanguageParser class derived from tatsu.parsing.Parser which uses a
MyLanguageBuffer for traversing input text, and implements the parser using one method for each
grammar rule:

def _somerulename_(self):
...

• A MyLanguageSemantics class with one semantic method per grammar rule. Each method receives as its
single parameter the Abstract Syntax Tree (AST) built from the rule invocation:

def somerulename(self, ast):
return ast

• A if __name__ == '__main__': definition, so the generated parser can be executed as a Python script.

The methods in the delegate class return the same AST received as parameter, but custom semantic classes can override
the methods to have them return anything (for example, a Semantic Graph). The semantics class can be used as a
template for the final semantics implementation, which can omit methods for the rules that do not need semantic
treatment.

If present, a _default() method will be called in the semantics class when no method matched the rule name:

def _default(self, ast):
...
return ast

If present, a _postproc() method will be called in the semantics class after each rule (including the semantics) is
processed. This method will receive the current parsing context as parameter:

def _postproc(self, context, ast):
...

12 Chapter 4. Using the Tool

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://python.org
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_semantic_graph

TatSu Documentation, Release 5.6.1

4.4 Using the Generated Parser

To use the generated parser, just subclass the base or the abstract parser, create an instance of it, and invoke its
parse() method passing the grammar to parse and the starting rule’s name as parameter:

from tatsu.util import asjson
from myparser import MyParser

parser = MyParser()
ast = parser.parse('text to parse', rule_name='start')
print(ast)
print(json.dumps(asjson(ast), indent=2))

The generated parsers’ constructors accept named arguments to specify whitespace characters, the regular expression
for comments, case sensitivity, verbosity, and more (see below).

To add semantic actions, just pass a semantic delegate to the parse method:

model = parser.parse(text, rule_name='start', semantics=MySemantics())

If special lexical treatment is required (as in 80 column languages), then a descendant of tatsu.buffering.
Buffer can be passed instead of the text:

class MySpecialBuffer(MyLanguageBuffer):
...

buf = MySpecialBuffer(text)
model = parser.parse(buf, rule_name='start', semantics=MySemantics())

The generated parser’s module can also be invoked as a script:

$ python myparser.py inputfile startrule

As a script, the generated parser’s module accepts several options:

$ python myparser.py -h
usage: myparser.py [-h] [-c] [-l] [-n] [-t] [-w WHITESPACE] FILE [STARTRULE]

Simple parser for DBD.

positional arguments:
FILE the input file to parse
STARTRULE the start rule for parsing

optional arguments:
-h, --help show this help message and exit
-c, --color use color in traces (requires the colorama library)
-l, --list list all rules and exit
-n, --no-nameguard disable the 'nameguard' feature
-t, --trace output trace information
-w WHITESPACE, --whitespace WHITESPACE

whitespace specification

4.4. Using the Generated Parser 13

TatSu Documentation, Release 5.6.1

14 Chapter 4. Using the Tool

CHAPTER 5

Grammar Syntax

TatSu uses a variant of the standard EBNF syntax. Syntax definitions for VIM and for Sublime Text can be found
under the etc/vim and etc/sublime directories in the source code distribution.

5.1 Rules

A grammar consists of a sequence of one or more rules of the form:

name = <expre> ;

If a name collides with a Python keyword, an underscore (_) will be appended to it on the generated parser.

Rule names that start with an uppercase character:

FRAGMENT = /[a-z]+/ ;

do not advance over whitespace before beginning to parse. This feature becomes handy when defining complex lexical
elements, as it allows breaking them into several rules.

The parser returns an AST value for each rule depending on what was parsed:

• A single value

• A list of AST

• A dict-like object for rules with named elements

• An object, when ModelBuilderSemantics is used

• None

See the Abstract Syntax Trees and Building Models sections for more details.

15

http://en.wikipedia.org/wiki/Ebnf
http://www.vim.org/
https://www.sublimetext.com
http://python.org
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
ast.html
models.html

TatSu Documentation, Release 5.6.1

5.2 Expressions

The expressions, in reverse order of operator precedence, can be:

5.2.1 # comment

Python-style comments are allowed.

5.2.2 e1 | e2

Choice. Match either e1 or e2.

A | be be used before the first option if desired:

choices
=
| e1
| e2
| e3
;

5.2.3 e1 e2

Sequence. Match e1 and then match e2.

5.2.4 (e)

Grouping. Match e. For example: ('a' | 'b').

5.2.5 [e]

Optionally match e.

5.2.6 { e } or { e }*

closure. Match e zero or more times. The AST returned for a closure is always a list.

5.2.7 { e }+

Positive closure. Match e one or more times. The AST is always a list.

5.2.8 {}

Empty closure. Match nothing and produce an empty list as AST.

16 Chapter 5. Grammar Syntax

http://python.org
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree

TatSu Documentation, Release 5.6.1

5.2.9 ~

The cut expression. Commit to the current option and prevent other options from being considered even
if what follows fails to parse.

In this example, other options won’t be considered if a parenthesis is parsed:

atom
=

'(' ~ @:expre ')'
| int
| bool
;

5.2.10 s%{ e }+

Positive join. Inspired by Python’s str.join(), it parses the same as this expression:

e {s ~ e}

yet the result is a single list of the form:

[e, s, e, s, e....]

Use grouping if s is more complex than a token or a pattern:

(s t)%{ e }+

5.2.11 s%{ e } or s%{ e }*

Join. Parses the list of s-separated expressions, or the empty closure.

It is equivalent to:

s%{e}+|{}

5.2.12 op<{ e }+

Left join. Like the join expression, but the result is a left-associative tree built with tuple(), in wich
the first element is the separator (op), and the other two elements are the operands.

The expression:

'+'<{/\d+/}+

Will parse this input:

1 + 2 + 3 + 4

To this tree:

5.2. Expressions 17

http://python.org

TatSu Documentation, Release 5.6.1

(
'+',
(

'+',
(

'+',
'1',
'2'

),
'3'

),
'4'

)

5.2.13 op>{ e }+

Right join. Like the join expression, but the result is a right-associative tree built with tuple(), in wich
the first element is the separator (op), and the other two elements are the operands.

The expression:

'+'>{/\d+/}+

Will parse this input:

1 + 2 + 3 + 4

To this tree:

(
'+',
'1',
(

'+',
'2',
(

'+',
'3',
'4'

)
)

)

5.2.14 s.{ e }+

Positive gather. Like positive join, but the separator is not included in the resulting AST.

5.2.15 s.{ e } or s.{ e }*

Gather. Like the join, but the separator is not included in the resulting AST.

It is equivalent to:

18 Chapter 5. Grammar Syntax

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree

TatSu Documentation, Release 5.6.1

s.{e}+|{}

5.2.16 &e

Positive lookahead. Succeed if e can be parsed, but do not consume any input.

5.2.17 !e

Negative lookahead. Fail if e can be parsed, and do not consume any input.

5.2.18 'text' or "text"

Match the token text within the quotation marks.

Note that if text is alphanumeric, then TatSu will check that the character following the token is not
alphanumeric. This is done to prevent tokens like IN matching when the text ahead is INITIALIZE. This
feature can be turned off by passing nameguard=False to the Parser or the Buffer, or by using
a pattern expression (see below) instead of a token expression. Alternatively, the @@nameguard or
@@namechars directives may be specified in the grammar:

@@nameguard :: False

or to specify additional characters that should also be considered part of names:

@@namechars :: '$-.'

5.2.19 r'text' or r"text"

Match the token text within the quotation marks, interpreting text like Python’s raw string literals.

5.2.20 ?"regexp" or ?'regexp' or /regexp/

The pattern expression. Match the Python regular expression regexp at the current text position. Unlike
other expressions, this one does not advance over whitespace or comments. For that, place the regexp
as the only term in its own rule.

The regex is interpreted as a Python’s raw string literal and passed with regexp.MULTILINE |
regexp.UNICODE options to the Python re module (or to regex, if available), using match() at the
current position in the text. The matched text is the AST for the expression.

Consecutive patterns are concatenated to form a single one.

5.2.21 /./

The any expression, matches the next position in the input. It works exactly like the ?'.' pattern, but is
implemented at the lexical level, without regular expressions.

5.2. Expressions 19

http://python.org
https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals
http://python.org
http://python.org
https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals
http://python.org
https://docs.python.org/3.4/library/re.html
https://pypi.python.org/pypi/regex
http://en.wikipedia.org/wiki/Abstract_syntax_tree

TatSu Documentation, Release 5.6.1

5.2.22 ->e

The “skip to” expression; useful for writing recovery rules.

The parser will advance over input, one character at time, until e matches. Whitespace and comments
will be skipped at each step. Advancing over input is done efficiently, with no regular expressions are
involved.

The expression is equivalent to:

{ !e /./ } e

A common form of the expression is ->&e, which is equivalent to:

{ !e /./ } &e

This is an example of the use of the “skip to” expression for recovery:

statement =
| if_statement
...
;

if_statement
=
| 'if' condition 'then' statement ['else' statement]
| 'if' statement_recovery
;

statement_recovery = ->&statement ;

5.2.23 `constant`

Match nothing, but behave as if constant had been parsed.

Constants can be used to inject elements into the concrete and abstract syntax trees, perhaps avoiding
having to write a semantic action. For example:

boolean_option = name ['=' (boolean|`true`)] ;

5.2.24 rulename

Invoke the rule named rulename. To help with lexical aspects of grammars, rules with names that begin
with an uppercase letter will not advance the input over whitespace or comments.

5.2.25 >rulename

The include operator. Include the right hand side of rule rulename at this point.

The following set of declarations:

includable = exp1 ;

expanded = exp0 >includable exp2 ;

20 Chapter 5. Grammar Syntax

TatSu Documentation, Release 5.6.1

Has the same effect as defining expanded as:

expanded = exp0 exp1 exp2 ;

Note that the included rule must be defined before the rule that includes it.

5.2.26 ()

The empty expression. Succeed without advancing over input. Its value is None.

5.2.27 !()

The fail expression. This is actually ! applied to (), which always fails.

5.2.28 name:e

Add the result of e to the AST using name as key. If name collides with any attribute or method of
dict, or is a Python keyword, an underscore (_) will be appended to the name.

5.2.29 name+:e

Add the result of e to the AST using name as key. Force the entry to be a list even if only one element
is added. Collisions with dict attributes or Python keywords are resolved by appending an underscore
to name.

5.2.30 @:e

The override operator. Make the AST for the complete rule be the AST for e.

The override operator is useful to recover only part of the right hand side of a rule without the need to
name it, or add a semantic action.

This is a typical use of the override operator:

subexp = '(' @:expre ')' ;

The [AST][Abstract Syntax Tree] returned for the subexp rule will be the [AST][Abstract Syntax Tree]
recovered from invoking expre.

5.2.31 @+:e

Like @:e, but make the AST always be a list.

This operator is convenient in cases such as:

arglist = '(' @+:arg {',' @+:arg}* ')' ;

In which the delimiting tokens are of no interest.

5.2. Expressions 21

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://python.org
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://python.org
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree

TatSu Documentation, Release 5.6.1

5.2.32 $

The end of text symbol. Verify that the end of the input text has been reached.

When there are no named items in a rule, the AST consists of the elements parsed by the rule, either a single item or a
list. This default behavior makes it easier to write simple rules:

number = /[0-9]+/ ;

Without having to write:

number = number:/[0-9]+/ ;

When a rule has named elements, the unnamed ones are excluded from the AST (they are ignored).

5.3 Rules with Arguments

TatSu allows rules to specify Python-style arguments:

addition(Add, op='+')
=
addend '+' addend
;

The arguments values are fixed at grammar-compilation time.

An alternative syntax is available if no keyword parameters are required:

addition::Add, '+'
=
addend '+' addend
;

Semantic methods must be ready to receive any arguments declared in the corresponding rule:

def addition(self, ast, name, op=None):
...

When working with rule arguments, it is good to define a _default() method that is ready to take any combination
of standard and keyword arguments:

def _default(self, ast, *args, **kwargs):
...

5.4 Based Rules

Rules may extend previously defined rules using the < operator. The base rule must be defined previously in the
grammar.

The following set of declarations:

base::Param = exp1 ;

extended < base = exp2 ;

22 Chapter 5. Grammar Syntax

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://python.org

TatSu Documentation, Release 5.6.1

Has the same effect as defining extended as:

extended::Param = exp1 exp2 ;

Parameters from the base rule are copied to the new rule if the new rule doesn’t define its own. Repeated inheritance
should be possible, but it hasn’t been tested.

5.5 Memoization

TatSu is a packrat parser. The result of parsing a rule at a given position in the input is cached, so the next time the
parser visits the same input position with the same rule the same result is returned and the input advanced, without
repeating the parsing. Memoization allows for grammars that are clearer and easier to write because there’s no fear
that repeating subexpressions will impact performance.

There are rules that should not be memoized. For example, rules that may succeed or not depending on the associated
semantic action should not be memoized if sucess depends on more than just the input.

The @nomemo decorator turns off memoization for a particular rule:

@nomemo
INDENT = () ;

@nomemo
DEDENT = () ;

5.6 Rule Overrides

A grammar rule may be redefined by using the @override decorator:

start = ab $;

ab = 'xyz' ;

@override
ab = @:'a' {@:'b'} ;

When combined with the #include directive, rule overrides can be used to create a modified grammar without
altering the original.

5.7 Grammar Name

The prefix to be used in classes generated by TatSu can be passed to the command-line tool using the -m option:

$ tatsu -m MyLanguage mygrammar.ebnf

will generate:

class MyLanguageParser(Parser):
...

The name can also be specified within the grammar using the @@grammar directive:

5.5. Memoization 23

TatSu Documentation, Release 5.6.1

@@grammar :: MyLanguage

5.8 Whitespace

By default, TatSu generated parsers skip the usual whitespace characters with the regular expression r'\s+' using
the re.UNICODE flag (or with the Pattern_White_Space property if the regex module is available), but you
can change that behavior by passing a whitespace parameter to your parser.

For example, the following will skip over tab (\t) and space characters, but not so with other typical whitespace
characters such as newline (\n):

parser = MyParser(text, whitespace='\t ')

The character string is converted into a regular expression character set before starting to parse.

You can also provide a regular expression directly instead of a string. The following is equivalent to the above example:

parser = MyParser(text, whitespace=re.compile(r'[\t]+'))

Note that the regular expression must be pre-compiled to let TatSu distinguish it from plain string.

If you do not define any whitespace characters, then you will have to handle whitespace in your grammar rules (as it’s
often done in PEG parsers):

parser = MyParser(text, whitespace='')

Whitespace may also be specified within the grammar using the @@whitespace directive, although any of the above
methods will overwrite the setting in the grammar:

@@whitespace :: /[\t]+/

5.9 Case Sensitivity

If the source language is case insensitive, it can be specified in the parser by using the ignorecase parameter:

parser = MyParser(text, ignorecase=True)

You may also specify case insensitivity within the grammar using the @@ignorecase directive:

@@ignorecase :: True

The change will affect token matching, but not pattern matching. Use (?i) in patterns that should ignore case.

5.10 Comments

Parsers will skip over comments specified as a regular expression using the comments_re parameter:

parser = MyParser(text, comments_re="\(*.*?*\)")

For more complex comment handling, you can override the Buffer.eat_comments() method.

For flexibility, it is possible to specify a pattern for end-of-line comments separately:

24 Chapter 5. Grammar Syntax

https://pypi.python.org/pypi/regex
http://en.wikipedia.org/wiki/Parsing_expression_grammar

TatSu Documentation, Release 5.6.1

parser = MyParser(
text,
comments_re="\(*.*?*\)",
eol_comments_re="#.*?$"

)

Both patterns may also be specified within a grammar using the @@comments and @@eol_comments directives:

@@comments :: /\(*.*?*\)/
@@eol_comments :: /#.*?$/

5.11 Reserved Words and Keywords

Some languages must reserve the use of certain tokens as valid identifiers because the tokens are used to mark particular
constructs in the language. Those reserved tokens are known as Reserved Words or Keywords

TatSu provides support for preventing the use of keywords as identifiers though the @@ keyword directive,and the
@ name decorator.

A grammar may specify reserved tokens providing a list of them in one or more @@ keyword directives:

@@keyword :: if endif
@@keyword :: else elseif

The @ name decorator checks that the result of a grammar rule does not match a token defined as a keyword:

@name
identifier = /(?!\d)\w+/ ;

There are situations in which a token is reserved only in a very specific context. In those cases, a negative lookahead
will prevent the use of the token:

statements = {!'END' statement}+ ;

5.12 Include Directive

TatSu grammars support file inclusion through the include directive:

#include :: "filename"

The resolution of the filename is relative to the directory/folder of the source. Absolute paths and ../ navigations are
honored.

The functionality required for implementing includes is available to all TatSu-generated parsers through the Buffer
class; see the EBNFBuffer class in the tatsu.parser module for an example.

5.13 Left Recursion

TatSu supports left recursion in PEG grammars. The algorithm used is Warth et al’s.

Sometimes, while debugging a grammar, it is useful to turn left-recursion support on or off:

5.11. Reserved Words and Keywords 25

https://en.wikipedia.org/wiki/Reserved_word
https://en.wikipedia.org/wiki/Reserved_word
https://en.wikipedia.org/wiki/Reserved_word
https://en.wikipedia.org/wiki/Reserved_word
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://www.vpri.org/pdf/tr2007002_packrat.pdf

TatSu Documentation, Release 5.6.1

parser = MyParser(
text,
left_recursion=True,

)

Left recursion can also be turned off from within the grammar using the @@left_recursion directive:

@@left_recursion :: False

26 Chapter 5. Grammar Syntax

CHAPTER 6

Grammar Directives

TatSu allows directives in the grammar that control the behavior of the generated parsers. All directives are of the
form @@name :: <value>. For example:

@@ignorecase :: True

The directives supported by TatSu are described below.

6.1 @@grammar :: <word>

Specifies the name of the grammar, and provides the base name for the classes in parser source-code
generation.

6.2 @@comments :: <regexp>

Specifies a regular expression to identify and exclude inline (bracketed) comments before the text is scanned by the
parser. For (* ... *) comments:

@@comments :: /\(*((?:.|\n)*?)*\)/

6.3 @@eol_comments :: <regexp>

Specifies a regular expression to identify and exclude end-of-line comments before the text is scanned by the parser.
For # ... comments:

@@eol_comments :: /#([^\n]*?)$/

27

TatSu Documentation, Release 5.6.1

6.4 @@ignorecase :: <bool>

If set to True makes TatSu not consider case when parsing tokens. Defaults to False:

@@ignorecase :: True

6.5 @@keyword :: {<word>|<string>}+

Specifies the list of strings or words that the grammar should consider as “keywords”. May appear more than once.
See the Reserved Words and Keywords section for an explanation.

6.6 @@left_recursion :: <bool>

Enables left-recursive rules in the grammar. See the Left Recursion sections for an explanation.

6.7 @@namechars :: <string>

A list of (non-alfanumeric) characters that should be considered part of names when using the @@nameguard feature:

@@namechars :: '-_$'

6.8 @@nameguard :: <bool>

When set to True, avoids matching tokens when the next character in the input sequence is alfarnumeric or a
@@namechar. Defaults to True. See the ‘text’ expression for an explanation.

@@nameguard :: False

6.9 @@parseinfo :: <bool>

When True, the parser will add parse information to every AST and Node generated by the parse under a
parseinfo field. The information will include:

• rule the rule name that parsed the node

• pos the initial position for the node in the input

• endpos the final position for the node in the input

• line the initial input line number for the element

• endline the final line number for the element

Enabling @@parseinfo will allow precise reporting over the input source-code while performing semantic actions.

28 Chapter 6. Grammar Directives

syntax.html#reserved-words-and-keywords
left_recursion.html
syntax.html?highlight=nameguard#text-or-text

TatSu Documentation, Release 5.6.1

6.10 @@whitespace :: <regexp>

Provides a regular expression for the whitespace to be ignored by the parser. It defaults to /(?s)\s+/:

@@whitespace :: /[\t]+/

6.10. @@whitespace :: <regexp> 29

TatSu Documentation, Release 5.6.1

30 Chapter 6. Grammar Directives

CHAPTER 7

Abstract Syntax Trees (ASTs)

By default, an AST is either a list (for closures and rules without named elements), or dict-derived object that contains
one item for every named element in the grammar rule. Items can be accessed through the standard dict syntax
(ast['key']), or as attributes (ast.key).

AST entries are single values if only one item was associated with a name, or lists if more than one item was matched.
There’s a provision in the grammar syntax (the +: operator) to force an AST entry to be a list even if only one element
was matched. The value for named elements that were not found during the parse (perhaps because they are optional)
is None.

When the parseinfo=True keyword argument has been passed to the Parser constructor, a parseinfo ele-
ment is added to AST nodes that are dict-like. The element contains a collections.namedtuple with the parse
information for the node:

ParseInfo = namedtuple(
'ParseInfo',
[

'tokenizer',
'rule',
'pos',
'endpos',
'line',
'endline',

]
)

With the help of the Buffer.line_info() method, it is possible to recover the line, column, and original text
parsed for the node. Note that when ParseInfo is generated, the Buffer used during parsing is kept in memory
for the lifetime of the AST.

Generation of parseinfo can also be controlled using the @@parseinfo :: True grammar directive.

31

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree

TatSu Documentation, Release 5.6.1

32 Chapter 7. Abstract Syntax Trees (ASTs)

CHAPTER 8

Semantic Actions

There are no constructs for semantic actions in TatSu grammars. This is on purpose, because semantic actions obscure
the declarative nature of grammars and provide for poor modularization from the parser-execution perspective.

Semantic actions are defined in a class, and applied by passing an object of the class to the parse() method of the
parser as the semantics= parameter. TatSu will invoke the method that matches the name of the grammar rule
every time the rule parses. The argument to the method will be the AST constructed from the right-hand-side of the
rule:

class MySemantics(object):
def some_rule_name(self, ast):

return ''.join(ast)

def _default(self, ast):
pass

If there’s no method matching the rule’s name, TatSu will try to invoke a _default() method if it’s defined:

def _default(self, ast):
...

Nothing will happen if neither the per-rule method nor _default() are defined.

The per-rule methods in classes implementing the semantics provide enough opportunity to do rule post-processing
operations, like verifications (for inadequate use of keywords as identifiers), or AST transformation:

class MyLanguageSemantics(object):
def identifier(self, ast):

if my_lange_module.is_keyword(ast):
raise FailedSemantics('"%s" is a keyword' % str(ast))

return ast

For finer-grained control it is enough to declare more rules, as the impact on the parsing times will be minimal.

If preprocessing is required at some point, it is enough to place invocations of empty rules where appropriate:

33

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree

TatSu Documentation, Release 5.6.1

myrule = first_part preproc {second_part} ;

preproc = () ;

The abstract parser will honor as a semantic action a method declared as:

def preproc(self, ast):
...

34 Chapter 8. Semantic Actions

CHAPTER 9

Building Models

Naming elements in grammar rules makes the parser discard uninteresting parts of the input, like punctuation, to
produce an Abstract Syntax Tree (AST) that reflects the semantic structure of what was parsed. But an AST doesn’t
carry information about the rule that generated it, so navigating the trees may be difficult.

TatSu defines the tatsu.model.ModelBuilderSemantics semantics class which helps construct object mod-
els from abtract syntax trees:

from tatsu.model import ModelBuilderSemantics

parser = MyParser(semantics=ModelBuilderSemantics())

Then you add the desired node type as first parameter to each grammar rule:

addition::AddOperator = left:mulexpre '+' right:addition ;

ModelBuilderSemantics will synthesize a class AddOperator(Node): class and use it to construct the
node. The synthesized class will have one attribute with the same name as the named elements in the rule.

You can also use Python’s built-in types as node types, and ModelBuilderSemantics will do the right thing:

integer::int = /[0-9]+/ ;

ModelBuilderSemantics acts as any other semantics class, so its default behavior can be overidden by defining
a method to handle the result of any particular grammar rule.

9.1 Walking Models

The class tatsu.model.NodeWalker allows for the easy traversal (walk) a model constructed with a
ModelBuilderSemantics instance:

from tatsu.model import NodeWalker

(continues on next page)

35

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://python.org

TatSu Documentation, Release 5.6.1

(continued from previous page)

class MyNodeWalker(NodeWalker):

def walk_AddOperator(self, node):
left = self.walk(node.left)
right = self.walk(node.right)

print('ADDED', left, right)

model = MyParser(semantics=ModelBuilderSemantics()).parse(input)

walker = MyNodeWalker()
walker.walk(model)

When a method with a name like walk_AddOperator() is defined, it will be called when a node of that type is
walked. The pythonic version of the class name may also be used for the walk method: walk__add_operator()
(note the double underscore).

If a walk method for a node class is not found, then a method for the class’s bases is searched, so it is possible to write
catch-all methods such as:

def walk_Node(self, node):
print('Reached Node', node)

def walk_str(self, s):
return s

def walk_object(self, o):
raise Exception('Unexpected tyle %s walked', type(o).__name__)

Predeclared classes can be passed to ModelBuilderSemantics instances through the types= parameter:

from mymodel import AddOperator, MulOperator

semantics=ModelBuilderSemantics(types=[AddOperator, MulOperator])

ModelBuilderSemantics assumes nothing about types=, so any constructor (a function, or a partial function)
can be used.

9.2 Model Class Hierarchies

It is possible to specify a a base class for generated model nodes:

additive
=
| addition
| substraction
;

addition::AddOperator::Operator
=
left:mulexpre op:'+' right:additive
;

substraction::SubstractOperator::Operator

(continues on next page)

36 Chapter 9. Building Models

TatSu Documentation, Release 5.6.1

(continued from previous page)

=
left:mulexpre op:'-' right:additive
;

TatSu will generate the base class if it’s not already known.

Base classes can be used as the target class in walkers, and in code generators:

class MyNodeWalker(NodeWalker):
def walk_Operator(self, node):

left = self.walk(node.left)
right = self.walk(node.right)
op = self.walk(node.op)

print(type(node).__name__, op, left, right)

class Operator(ModelRenderer):
template = '{left} {op} {right}'

9.2. Model Class Hierarchies 37

TatSu Documentation, Release 5.6.1

38 Chapter 9. Building Models

CHAPTER 10

Templates and Translation

note As of TatSu 3.2.0, code generation is separated from grammar models through tatsu.codegen.
CodeGenerator as to allow for code generation targets different from Python. Still, the use of inline tem-
plates and rendering.Renderer hasn’t changed. See the regex example for merged modeling and code
generation.

TatSu doesn’t impose a way to create translators with it, but it exposes the facilities it uses to generate the Python
source code for parsers.

Translation in TatSu is template-based, but instead of defining or using a complex templating engine (yet another
language), it relies on the simple but powerful string.Formatter of the Python standard library. The templates
are simple strings that, in TatSu’s style, are inlined with the code.

To generate a parser, TatSu constructs an object model of the parsed grammar. A tatsu.
codegen.CodeGenerator instance matches model objects to classes that descend from tatsu.codegen.
ModelRenderer and implement the translation and rendering using string templates. Templates are left-trimmed
on whitespace, like Python doc-comments are. This is an example taken from TatSu’s source code:

class Lookahead(ModelRenderer):
template = '''\

with self._if():
{exp:1::}\
'''

Every attribute of the object that doesn’t start with an underscore (_) may be used as a template field, and fields can
be added or modified by overriding the render_fields(fields) method. Fields themselves are lazily rendered
before being expanded by the template, so a field may be an instance of a ModelRenderer descendant.

The rendering module defines a Formatter enhanced to support the rendering of items in an iterable one by
one. The syntax to achieve that is:

'''
{fieldname:ind:sep:fmt}
'''

All of ind, sep, and fmt are optional, but the three colons are not. A field specified that way will be rendered using:

39

http://python.org
http://python.org
http://python.org
http://python.org

TatSu Documentation, Release 5.6.1

indent(sep.join(fmt % render(v) for v in value), ind)

The extended format can also be used with non-iterables, in which case the rendering will be:

indent(fmt % render(value), ind)

The default multiplier for ind is 4, but that can be overridden using n*m (for example 3*1) in the format.

note Using a newline character (\n) as separator will interfere with left trimming and indentation of templates. To
use a newline as separator, specify it as \\n, and the renderer will understand the intention.

40 Chapter 10. Templates and Translation

CHAPTER 11

Left Recursion

TatSu supports direct and indirect left recursion in grammar rules using the the algorithm described by Nicolas Laurent
and Kim Mens in their 2015 paper Parsing Expression Grammars Made Practical.

The design and implementation of left recursion was done by Vic Nightfall with research and help by Nicolas Laurent
on Autumn, and research by Philippe Sigaud on PEGGED.

Left recursive rules produce left-associative parse trees (AST), as most users would expect, except if some of the rules
involved recurse on the right (a pending topic).

Left recursion support is enabled by default in TatSu. To disable it for a particular grammar, use the
@@left_recursion directive:

@@left_recursion :: False

Warning: Not all left-recursive grammars that use the TatSu syntax are PEG (the same happens with right-
recursive grammars). The order of rules matters in PEG.

For right-recursive grammars the choices that parse the most input must come first. The same is true for left-
recursive grammars.

41

http://norswap.com/pubs/sle2015.pdf
https://github.com/Victorious3
https://github.com/norswap
https://github.com/norswap/autumn
https://github.com/PhilippeSigaud
https://github.com/PhilippeSigaud/Pegged/wiki/Left-Recursion
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Parsing_expression_grammar

TatSu Documentation, Release 5.6.1

42 Chapter 11. Left Recursion

CHAPTER 12

Calc Mini Tutorial

TatSu users have suggested that a simple calculator, like the one in the documentation for PLY would be useful.

Here it is.

12.1 The initial grammar

This is the original PLY grammar for arithmetic expressions:

expression : expression + term
| expression - term
| term

term : term * factor
| term / factor
| factor

factor : NUMBER
| (expression)

And this is the input expression for testing:

3 + 5 * (10 - 20)

12.2 The Tatsu grammar

The first step is to convert the grammar to TatSu syntax and style, add rules for lexical elements (number in this
case), add a start rule that checks for end of input, and a directive to name the generated classes:

43

http://www.dabeaz.com/ply/ply.html#ply_nn22
http://www.dabeaz.com/ply/ply.html#ply_nn22

TatSu Documentation, Release 5.6.1

@@grammar::CALC

start
=
expression $
;

expression
=
| expression '+' term
| expression '-' term
| term
;

term
=
| term '*' factor
| term '/' factor
| factor
;

factor
=
| '(' expression ')'
| number
;

number
=
/\d+/
;

12.3 Add cut expressions

Cut expressions make a parser commit to a particular option after certain tokens have been seen. They make parsing
more efficient, because other options are not tried. They also make error messages more precise, because errors will
be reported closest to the point of failure in the input.

@@grammar::CALC

start
=
expression $
;

expression
=
| expression '+' ~ term

(continues on next page)

44 Chapter 12. Calc Mini Tutorial

TatSu Documentation, Release 5.6.1

(continued from previous page)

| expression '-' ~ term
| term
;

term
=
| term '*' ~ factor
| term '/' ~ factor
| factor
;

factor
=
| '(' ~ expression ')'
| number
;

number
=
/\d+/
;

Let’s save the above grammar in a file called calc_cut.ebnf. We can now compile the grammar, and test the
parser:

import json
from pprint import pprint

import tatsu

def simple_parse():
with open('calc_cut.ebnf') as f:

grammar = f.read()

parser = tatsu.compile(grammar)
ast = parser.parse('3 + 5 * (10 - 20)')

print('# SIMPLE PARSE')
print('# AST')
pprint(ast, width=20, indent=4)

print()

print('# JSON')
print(json.dumps(ast, indent=4))

if __name__ == '__main__':
simple_parse()

Save the above in calc.py. This is the output:

12.3. Add cut expressions 45

TatSu Documentation, Release 5.6.1

$ python calc.py

SIMPLE PARSE
AST
['3',

'+',
['5',

'*',
['(',

['10',
'-',
'20'],

')']]]

JSON
[

"3",
"+",
[

"5",
"*",
[

"(",
[

"10",
"-",
"20"

],
")"

]
]

]

12.4 Annotating the grammar

Dealing with ASTs that are lists of lists leads to code that is difficult to read, and error-prone. TatSu allows naming
the elements in a rule to produce more humanly-readable ASTs and to allow for clearer semantics code. This is an
annotated version of the grammar:

@@grammar::CALC

start
=
expression $
;

expression
=
| left:expression op:'+' ~ right:term
| left:expression op:'-' ~ right:term
| term
;

(continues on next page)

46 Chapter 12. Calc Mini Tutorial

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree

TatSu Documentation, Release 5.6.1

(continued from previous page)

term
=
| left:term op:'*' ~ right:factor
| left:term '/' ~ right:factor
| factor
;

factor
=
| '(' ~ @:expression ')'
| number
;

number
=
/\d+/
;

Save the annotated grammar in calc_annotated.ebnf, change the grammar filename in calc.py and re-
execute it to get the resulting AST:

ANNOTATED AST
{ 'left': '3',

'op': '+',
'right': { 'left': '5',

'op': '*',
'right': { 'left': '10',

'op': '-',
'right': '20'}}}

12.5 Semantics

Semantic actions for TatSu parsers are not specified in the grammar, but in a separate semantics class.

from pprint import pprint

import tatsu
from tatsu.ast import AST

class CalcBasicSemantics(object):
def number(self, ast):

return int(ast)

def term(self, ast):
if not isinstance(ast, AST):

return ast
elif ast.op == '*':

return ast.left * ast.right
elif ast.op == '/':

(continues on next page)

12.5. Semantics 47

TatSu Documentation, Release 5.6.1

(continued from previous page)

return ast.left / ast.right
else:

raise Exception('Unknown operator', ast.op)

def expression(self, ast):
if not isinstance(ast, AST):

return ast
elif ast.op == '+':

return ast.left + ast.right
elif ast.op == '-':

return ast.left - ast.right
else:

raise Exception('Unknown operator', ast.op)

def parse_with_basic_semantics():
with open('calc_annotated.ebnf') as f:

grammar = f.read()

parser = tatsu.compile(grammar)
ast = parser.parse(

'3 + 5 * (10 - 20)',
semantics=CalcBasicSemantics()

)

print('# BASIC SEMANTICS RESULT')
pprint(ast, width=20, indent=4)

if __name__ == '__main__':
parse_with_basic_semantics()

Save the above in calc_semantics.py and execute it with python calc_semantics.py. The result is:

BASIC SEMANTICS RESULT
-47

12.6 One rule per expression type

Having semantic actions determine what was parsed with isinstance() or querying the AST for operators is not
very pythonic, nor object oriented, and it leads to code that’s more difficult to maintain. It’s preferable to have one
rule per expression kind, something that will be necessary if we want to build object models to use walkers and code
generation.

@@grammar::CALC

start
=
expression $
;

expression

(continues on next page)

48 Chapter 12. Calc Mini Tutorial

http://en.wikipedia.org/wiki/Abstract_syntax_tree

TatSu Documentation, Release 5.6.1

(continued from previous page)

=
| addition
| subtraction
| term
;

addition
=
left:expression op:'+' ~ right:term
;

subtraction
=
left:expression op:'-' ~ right:term
;

term
=
| multiplication
| division
| factor
;

multiplication
=
left:term op:'*' ~ right:factor
;

division
=
left:term '/' ~ right:factor
;

factor
=
| '(' ~ @:expression ')'
| number
;

number
=
/\d+/
;

Save the above in calc_refactored.ebnf.

from pprint import pprint

import tatsu

(continues on next page)

12.6. One rule per expression type 49

TatSu Documentation, Release 5.6.1

(continued from previous page)

class CalcSemantics(object):
def number(self, ast):

return int(ast)

def addition(self, ast):
return ast.left + ast.right

def subtraction(self, ast):
return ast.left - ast.right

def multiplication(self, ast):
return ast.left * ast.right

def division(self, ast):
return ast.left / ast.right

def parse_refactored():
with open('calc_refactored.ebnf') as f:

grammar = f.read()

parser = tatsu.compile(grammar)
ast = parser.parse(

'3 + 5 * (10 - 20)',
semantics=CalcSemantics()

)

print('# REFACTORED SEMANTICS RESULT')
pprint(ast, width=20, indent=4)
print()

if __name__ == '__main__':
parse_refactored()

The semantics implementation is simpler, and the results are the same:

REFACTORED SEMANTICS RESULT
-47

12.7 Object models

Binding semantics to grammar rules is powerful and versatile, but this approach risks tying the semantics to the parsing
process, rather than to the parsed objects.

That is not a problem for simple languages, like the arithmetic expression language in this tutorial. But as the com-
plexity of the parsed language increases, the number of grammar rules quickly becomes larger than the types of objects
parsed.

TatSu can create typed object models directly from the parsing process which can be navigated (walked) and trans-
formed (with code generation) in later passes.

The first step to create an object model is to annotate the rule names with the desired class names:

50 Chapter 12. Calc Mini Tutorial

TatSu Documentation, Release 5.6.1

@@grammar::Calc

start
=
expression $
;

expression
=
| addition
| subtraction
| term
;

addition::Add
=
left:term op:'+' ~ right:expression
;

subtraction::Subtract
=
left:term op:'-' ~ right:expression
;

term
=
| multiplication
| division
| factor
;

multiplication::Multiply
=
left:factor op:'*' ~ right:term
;

division::Divide
=
left:factor '/' ~ right:term
;

factor
=
| subexpression
| number
;

subexpression

(continues on next page)

12.7. Object models 51

TatSu Documentation, Release 5.6.1

(continued from previous page)

=
'(' ~ @:expression ')'
;

number::int
=
/\d+/
;

Save the grammar in a file name calc_model.ebnf.

The tatsu.objectmodel.Node descendants are synthetized at runtime using tatsu.semantics.
ModelBuilderSemantics.

This is how the model looks like when generated with the tatsu.to_python_model() function or from the
command line with tatsu --object-model calc_model.ebnf -G calc_semantics_model.py:

from tatsu.objectmodel import Node
from tatsu.semantics import ModelBuilderSemantics

class ModelBase(Node):
pass

class CalcModelBuilderSemantics(ModelBuilderSemantics):
def __init__(self, context=None, types=None):

types = [
t for t in globals().values()
if type(t) is type and issubclass(t, ModelBase)

] + (types or [])
super(CalcModelBuilderSemantics, self).__init__(context=context, types=types)

class Add(ModelBase):
left = None
op = None
right = None

class Subtract(ModelBase):
left = None
op = None
right = None

class Multiply(ModelBase):
left = None
op = None
right = None

class Divide(ModelBase):
left = None
right = None

The model that results from a parse can be printed, and walked:

52 Chapter 12. Calc Mini Tutorial

TatSu Documentation, Release 5.6.1

import tatsu
from tatsu.walkers import NodeWalker

class CalcWalker(NodeWalker):
def walk_object(self, node):

return node

def walk__add(self, node):
return self.walk(node.left) + self.walk(node.right)

def walk__subtract(self, node):
return self.walk(node.left) - self.walk(node.right)

def walk__multiply(self, node):
return self.walk(node.left) * self.walk(node.right)

def walk__divide(self, node):
return self.walk(node.left) / self.walk(node.right)

def parse_and_walk_model():
with open('calc_model.ebnf') as f:

grammar = f.read()

parser = tatsu.compile(grammar, asmodel=True)
model = parser.parse('3 + 5 * (10 - 20)')

print('# WALKER RESULT IS:')
print(CalcWalker().walk(model))
print()

if __name__ == '__main__':
parse_and_walk_model()

Save the above program in calc_model.py and execute it to get this result:

WALKER RESULT IS:
-47

12.8 Code Generation

Translation is one of the most common tasks in language processing. Analysis often sumarizes the parsed input, and
walkers are good for that. In translation, the output can often be as verbose as the input, so a systematic approach that
avoids bookkeeping as much as possible is convenient.

TatSu provides support for template-based code generation (translation) in the tatsu.codegen module. Code
generation works by defining a translation class for each class in the model specified by the grammar.

Adjust our previous calc_model.ebnf grammar and annotate the number rule like so:

number::Number
=
value:/\d+/
;

12.8. Code Generation 53

TatSu Documentation, Release 5.6.1

The following code generator translates input expressions to the postfix instructions of a stack-based processor:

import sys

from tatsu.codegen import ModelRenderer
from tatsu.codegen import CodeGenerator

THIS_MODULE = sys.modules[__name__]

class PostfixCodeGenerator(CodeGenerator):
def __init__(self):

super().__init__(modules=[THIS_MODULE])

class Number(ModelRenderer):
template = '''\
PUSH {value}'''

class Add(ModelRenderer):
template = '''\
{left}
{right}
ADD'''

class Subtract(ModelRenderer):
template = '''\
{left}
{right}
SUB'''

class Multiply(ModelRenderer):
template = '''\
{left}
{right}
MUL'''

class Divide(ModelRenderer):
template = '''\
{left}
{right}
DIV'''

Save the above in codegen.py. The code generator can be used as follows:

from codegen import PostfixCodeGenerator

def parse_and_translate():
with open('calc_model.ebnf') as f:

grammar = f.read()

parser = tatsu.compile(grammar, asmodel=True)
model = parser.parse('3 + 5 * (10 - 20)')

(continues on next page)

54 Chapter 12. Calc Mini Tutorial

TatSu Documentation, Release 5.6.1

(continued from previous page)

postfix = PostfixCodeGenerator().render(model)

print('# TRANSLATED TO POSTFIX')
print(postfix)

if __name__ == '__main__':
parse_and_translate()

Save the above program in calc_translate.py and execute it to get this result:

TRANSLATED TO POSTFIX
PUSH 3
PUSH 5
PUSH 10
PUSH 20
SUB
MUL
ADD

12.8. Code Generation 55

TatSu Documentation, Release 5.6.1

56 Chapter 12. Calc Mini Tutorial

CHAPTER 13

Traces

TatSu compiling and parsing actions have a trace= argument (--trace on the command line). When used with
the colorize= option (--color on the command line), it produces trace like the following, in which colors mean
try, suceed, and fail.

start ~1:1
3 + 5 * (10 - 20)
expressionstart ~1:1
3 + 5 * (10 - 20)
expressionexpressionstart ~1:1
3 + 5 * (10 - 20)
expressionexpressionstart ~1:1
3 + 5 * (10 - 20)
expressionexpressionstart ~1:1
3 + 5 * (10 - 20)
expressionexpressionstart ~1:1
3 + 5 * (10 - 20)
termexpressionstart ~1:1
3 + 5 * (10 - 20)
termtermexpressionstart ~1:1
3 + 5 * (10 - 20)
termtermexpressionstart ~1:1
3 + 5 * (10 - 20)
termtermexpressionstart ~1:1
3 + 5 * (10 - 20)
termtermexpressionstart ~1:1
3 + 5 * (10 - 20)
factortermexpressionstart ~1:1
3 + 5 * (10 - 20)

57

TatSu Documentation, Release 5.6.1

’(’ ~1:1
3 + 5 * (10 - 20)
numberfactortermexpressionstart ~1:1
3 + 5 * (10 - 20)
’3’ /d+/ ~1:2
+ 5 * (10 - 20)
numberfactortermexpressionstart ~1:2
+ 5 * (10 - 20)
factortermexpressionstart ~1:2
+ 5 * (10 - 20)
termtermexpressionstart ~1:3
+ 5 * (10 - 20)
termtermexpressionstart ~1:3
+ 5 * (10 - 20)
’*’ ~1:3
+ 5 * (10 - 20)
termtermexpressionstart ~1:3
+ 5 * (10 - 20)
termtermexpressionstart ~1:3
+ 5 * (10 - 20)
’/’ ~1:3
+ 5 * (10 - 20)
factortermexpressionstart ~1:3
+ 5 * (10 - 20)
’(’ ~1:3
+ 5 * (10 - 20)
numberfactortermexpressionstart ~1:3
+ 5 * (10 - 20)
” /d+/ ~1:3
+ 5 * (10 - 20)
factortermexpressionstart ~1:3
+ 5 * (10 - 20)
termexpressionstart ~1:2
+ 5 * (10 - 20)
expressionexpressionstart ~1:3
+ 5 * (10 - 20)
expressionexpressionstart ~1:3
+ 5 * (10 - 20)
’+’ ~1:4
5 * (10 - 20)
termexpressionstart ~1:4
5 * (10 - 20)
termtermexpressionstart ~1:5
5 * (10 - 20)
termtermexpressionstart ~1:5
5 * (10 - 20)
termtermexpressionstart ~1:5

58 Chapter 13. Traces

TatSu Documentation, Release 5.6.1

5 * (10 - 20)
termtermexpressionstart ~1:5
5 * (10 - 20)
factortermexpressionstart ~1:5
5 * (10 - 20)
’(’ ~1:5
5 * (10 - 20)
numberfactortermexpressionstart ~1:5
5 * (10 - 20)
’5’ /d+/ ~1:6
* (10 - 20)
numberfactortermexpressionstart ~1:6
* (10 - 20)
factortermexpressionstart ~1:6
* (10 - 20)
termtermexpressionstart ~1:7
* (10 - 20)
termtermexpressionstart ~1:7
* (10 - 20)
’*’ ~1:8
(10 - 20)
factortermexpressionstart ~1:8
(10 - 20)
’(’ ~1:10
10 - 20)
expressionfactortermexpressionstart ~1:10
10 - 20)
expressionexpressionfactortermexpressionstart ~1:11
10 - 20)
expressionexpressionfactortermexpressionstart ~1:11
10 - 20)
expressionexpressionfactortermexpressionstart ~1:11
10 - 20)
expressionexpressionfactortermexpressionstart ~1:11
10 - 20)
termexpressionfactortermexpressionstart ~1:11
10 - 20)
termtermexpressionfactortermexpressionstart ~1:11
10 - 20)
termtermexpressionfactortermexpressionstart ~1:11
10 - 20)
termtermexpressionfactortermexpressionstart ~1:11
10 - 20)
termtermexpressionfactortermexpressionstart ~1:11
10 - 20)
factortermexpressionfactortermexpressionstart ~1:11
10 - 20)

59

TatSu Documentation, Release 5.6.1

’(’ ~1:11
10 - 20)
numberfactortermexpressionfactortermexpressionstart ~1:11
10 - 20)
’10’ /d+/ ~1:13
- 20)
numberfactortermexpressionfactortermexpressionstart ~1:13
- 20)
factortermexpressionfactortermexpressionstart ~1:13
- 20)
termtermexpressionfactortermexpressionstart ~1:14
- 20)
termtermexpressionfactortermexpressionstart ~1:14
- 20)
’*’ ~1:14
- 20)
termtermexpressionfactortermexpressionstart ~1:14
- 20)
termtermexpressionfactortermexpressionstart ~1:14
- 20)
’/’ ~1:14
- 20)
factortermexpressionfactortermexpressionstart ~1:14
- 20)
’(’ ~1:14
- 20)
numberfactortermexpressionfactortermexpressionstart ~1:14
- 20)
” /d+/ ~1:14
- 20)
factortermexpressionfactortermexpressionstart ~1:14
- 20)
termexpressionfactortermexpressionstart ~1:13
- 20)
expressionexpressionfactortermexpressionstart ~1:14
- 20)
expressionexpressionfactortermexpressionstart ~1:14
- 20)
’+’ ~1:14
- 20)
expressionexpressionfactortermexpressionstart ~1:14
- 20)
expressionexpressionfactortermexpressionstart ~1:14
- 20)
’-’ ~1:15
20)
termexpressionfactortermexpressionstart ~1:15

60 Chapter 13. Traces

TatSu Documentation, Release 5.6.1

20)
termtermexpressionfactortermexpressionstart ~1:16
20)
termtermexpressionfactortermexpressionstart ~1:16
20)
termtermexpressionfactortermexpressionstart ~1:16
20)
termtermexpressionfactortermexpressionstart ~1:16
20)
factortermexpressionfactortermexpressionstart ~1:16
20)
’(’ ~1:16
20)
numberfactortermexpressionfactortermexpressionstart ~1:16
20)
’20’ /d+/ ~1:18
)
numberfactortermexpressionfactortermexpressionstart ~1:18
)
factortermexpressionfactortermexpressionstart ~1:18
)
termtermexpressionfactortermexpressionstart ~1:19
)
termtermexpressionfactortermexpressionstart ~1:19
)
’*’ ~1:19
)
termtermexpressionfactortermexpressionstart ~1:19
)
termtermexpressionfactortermexpressionstart ~1:19
)
’/’ ~1:19
)
factortermexpressionfactortermexpressionstart ~1:19
)
’(’ ~1:19
)
numberfactortermexpressionfactortermexpressionstart ~1:19
)
” /d+/ ~1:19
)
factortermexpressionfactortermexpressionstart ~1:19
)
termexpressionfactortermexpressionstart ~1:18
)
expressionexpressionfactortermexpressionstart ~1:19
)

61

TatSu Documentation, Release 5.6.1

expressionexpressionfactortermexpressionstart ~1:19
)
’+’ ~1:19
)
expressionexpressionfactortermexpressionstart ~1:19
)
expressionexpressionfactortermexpressionstart ~1:19
)
’-’ ~1:19
)
termexpressionfactortermexpressionstart ~1:19
)
termexpressionfactortermexpressionstart ~1:19
)
expressionfactortermexpressionstart ~1:18
)
’)’
factortermexpressionstart
termtermexpressionstart
termtermexpressionstart
’*’
termtermexpressionstart
termtermexpressionstart
’/’
factortermexpressionstart
’(’
numberfactortermexpressionstart
” /d+/
factortermexpressionstart
termexpressionstart
expressionexpressionstart
expressionexpressionstart
’+’
expressionexpressionstart
expressionexpressionstart
’-’
termexpressionstart
termexpressionstart
expressionstart
start

62 Chapter 13. Traces

CHAPTER 14

Grako Compatibility

TatSu is routinely tested over major projects developed with Grako. The backwards-compatibility suite includes (at
least) translators for COBOL, Java, and (Oracle) SQL.

Grako grammars and projects can be used with TatSu, with these caveats:

• The Python module name changed to tatsu.

• ignorecase no longer applies to regular expressions in grammars. Use (?i) in the pattern to enable re.
IGNORECASE

• Left recursion is enabled by default because it works and has zero impact on non-recursive grammars.

• Deprecated grammar syntax is no longer documented. It’s best not to use it, as it will be removed in a future
version of TatSu.

63

https://pypi.python.org/pypi/grako/
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Java
https://en.wikipedia.org/wiki/SQL
https://pypi.python.org/pypi/grako/
http://python.org

TatSu Documentation, Release 5.6.1

64 Chapter 14. Grako Compatibility

CHAPTER 15

Using ANTLR Grammars

ANTLR is one of the best known parser genrators, and it has an important collection of grammars. The tatsu.g2e
module can translate an ANTLR grammar to the syntax used by TatSu.

The resulting grammar won’t be immediately usable. It will have to be edited to make it abide to PEG semantics, and
in general be adapted to the way things are done with TatSu.

To use g2e as a module, invoke one of its translation functions.

def translate(text=None, filename=None, name=None, encoding='utf-8', trace=False):

For example:

from tatsu import g2e

tatsu_grammar = translate(filename='mygrammar.g', name='My')
with open('my.ebnf') as f:

f.write(tatsu_grammar)

g2e can also be used from the command line:

$ python -m tatsu.g2e mygrammar.g > my.ebnf

65

http://www.antlr.org/
https://github.com/antlr/grammars-v4
http://www.antlr.org/
http://en.wikipedia.org/wiki/Parsing_expression_grammar

TatSu Documentation, Release 5.6.1

66 Chapter 15. Using ANTLR Grammars

CHAPTER 16

Examples

16.1 Tatsu

The file grammar/tatsu.ebnf contains a grammar for the TatSu grammar language written in its own grammar
language. It is used in the bootstrap test suite to prove that TatSu can generate a parser to parse its own language,
and the resulting parser is made the bootstrap parser every time TatSu is stable (see tatsu/bootstrap.py for
the generated parser).

TatSu uses TatSu to translate grammars into parsers, so it is a good example of end-to-end translation.

16.2 Calc

The project examples/calc implements a calculator for simple expressions, and is written as a tutorial over most
of the features provided by TatSu.

16.3 g2e

The project examples/g2e contains an example ANTLR to TatSu grammar translation. The project is a good
example of the use g2e. It generates the TatSu grammar on standard output, but because the model used is TatSu’s
own, the same code can be used to directly generate a parser from any ANTLR grammar. Please take a look at the
examples README to know about limitations.

67

http://www.antlr.org/
http://www.antlr.org/

TatSu Documentation, Release 5.6.1

68 Chapter 16. Examples

CHAPTER 17

Support

For general Q&A, please use the [tatsu] tag on StackOverflow.

69

http://stackoverflow.com/tags/tatsu/info

TatSu Documentation, Release 5.6.1

70 Chapter 17. Support

CHAPTER 18

Credits

• TatSu is the successor of Grako, which was built by Juancarlo Añez and funded by Thomas Bragg to do
analysis and translation of programs written in legacy programming languages.

• Niklaus Wirth was the chief designer of the programming languages Euler, Algol W, Pascal, Modula, Modula-
2, Oberon, and Oberon-2. In the last chapter of his 1976 book Algorithms + Data Structures = Programs, Wirth
creates a top-down, descent parser with recovery for the Pascal-like, LL(1) programming language PL/0. The
structure of the program is that of a PEG parser, though the concept of PEG wasn’t formalized until 2004.

• Bryan Ford introduced PEG (parsing expression grammars) in 2004.

• Other parser generators like PEG.js by David Majda inspired the work in TatSu.

• William Thompson inspired the use of context managers with his blog post that I knew about through the
invaluable Python Weekly newsletter, curated by Rahul Chaudhary

• Jeff Knupp explains why TatSu’s use of exceptions is sound, so I don’t have to.

• Terence Parr created ANTLR, probably the most solid and professional parser generator out there. Ter, ANTLR,
and the folks on the ANLTR forums helped me shape my ideas about TatSu.

• JavaCC (originally Jack) looks like an abandoned project. It was the first parser generator I used while teaching.

• TatSu is very fast. But dealing with millions of lines of legacy source code in a matter of minutes would be
impossible without PyPy, the work of Armin Rigo and the PyPy team.

• Guido van Rossum created and has lead the development of the Python programming environment for over a
decade. A tool like TatSu, at under 10K lines of code, would not have been possible without Python.

• Kota Mizushima welcomed me to the CSAIL at MIT PEG and Packrat parsing mailing list, and immediately
offered ideas and pointed me to documentation about the implementation of cut in modern parsers. The opti-
mization of memoization information in TatSu is thanks to one of his papers.

• My students at UCAB inspired me to think about how grammar-based parser generation could be made more
approachable.

• Gustavo Lau was my professor of Language Theory at USB, and he was kind enough to be my tutor in a thesis
project on programming languages that was more than I could chew. My peers, and then teaching advisers
Alberto Torres, and Enzo Chiariotti formed a team with Gustavo to challenge us with programming languages

71

https://pypi.python.org/pypi/grako/
http://en.wikipedia.org/wiki/Euler_programming_language
http://en.wikipedia.org/wiki/Algol_W
http://en.wikipedia.org/wiki/Pascal_programming_language
http://en.wikipedia.org/wiki/Modula
http://en.wikipedia.org/wiki/Modula-2
http://en.wikipedia.org/wiki/Modula-2
http://en.wikipedia.org/wiki/Oberon_(programming_language)
http://en.wikipedia.org/wiki/Oberon-2
http://www.amazon.com/Algorithms-Structures-Prentice-Hall-Automatic-Computation/dp/0130224189/
http://en.wikipedia.org/wiki/Niklaus_Wirth
http://en.wikipedia.org/wiki/Pascal_programming_language
http://en.wikipedia.org/wiki/LL(1)
http://en.wikipedia.org/wiki/PL/0
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://dl.acm.org/citation.cfm?id=964001.964011
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://pegjs.majda.cz/
http://dietbuddha.blogspot.com/2012/12/52python-encapsulating-exceptions-with.html
http://www.pythonweekly.com/
http://www.jeffknupp.com/blog/2013/02/06/write-cleaner-python-use-exceptions/
http://www.antlr.org/
http://en.wikipedia.org/wiki/Javacc
http://pypy.org/
http://pypy.org/people.html
http://python.org
http://python.org
http://www.csail.mit.edu/
https://lists.csail.mit.edu/mailman/listinfo/peg
http://www.ucab.edu.ve/
http://www.usb.ve/

TatSu Documentation, Release 5.6.1

like LATORTA and term exams that went well into the eight hours. And, of course, there was also the pirate
patch that should be worn on the left or right eye depending on the LL or LR challenge.

• Manuel Rey led me through another, unfinished, thesis project that taught me about what languages (spoken
languages in general, and programming languages in particular) are about. I learned why languages use declen-
sions, and why, although the underlying words are in English, the structure of the programs we write is more
like Japanese.

• Marcus Brinkmann has kindly submitted patches that have resolved obscure bugs in TatSu’s implementation,
and that have made the tool more user-friendly, specially for newcomers to parsing and translation.

• Robert Speer cleaned up the nonsense in trying to have Unicode handling be compatible with 2.7.x and 3.x,
and figured out the canonical way of honoring escape sequences in grammar tokens without throwing off the
encoding.

• Basel Shishani has been an incredibly throrough peer-reviewer of TatSu.

• Paul Sargent implemented Warth et al’s algorithm for supporting direct and indirect left recursion in PEG
parsers.

• Kathryn Long proposed better support for UNICODE in the treatment of whitespace and regular expressions
(patterns) in general. Her other contributions have made TatSu more congruent, and more user-friendly.

• David Röthlisberger provided the definitive patch that allows the use of Python keywords as rule names.

• Nicolas Laurent researched, designed, implemented, and published the left recursion algorithm used in TatSu.

• Vic Nightfall designed and coded an implementation of left recursion that handles all the use cases of interest
(see the Left Recursion topic for details). He was gentle enough to kindly take over management of the TatSu
project since 2019.

72 Chapter 18. Credits

http://en.wikipedia.org/wiki/Declension
http://en.wikipedia.org/wiki/Declension
http://en.wikipedia.org/wiki/English_grammar
http://en.wikipedia.org/wiki/Japanese_grammar
https://bitbucket.org/lambdafu/
https://bitbucket.org/r_speer
https://bitbucket.org/basel-shishani
https://bitbucket.org/pauls
http://www.vpri.org/pdf/tr2007002_packrat.pdf
http://en.wikipedia.org/wiki/Parsing_expression_grammar
https://bitbucket.org/starkat
https://bitbucket.org/drothlis/
http://python.org
https://github.com/norswap
https://github.com/Victorious3
left_recursion.html

CHAPTER 19

Contributors

The following, among others, have contributed to TatSu with features, but reports, bug fixes, or suggestions:

Alberto Berti, Andy Wright, Basel Shishani, David Chen, David Delassus, David Röthlisberger, David
Sanders, Dmytro Ivanov, Felipe, Franck Pommereau, Franklin Lee, Gabriele Paganelli, Guido van
Rossum, Jack Taylor, Kathryn Long, Karthikeyan Singaravelan, Manuel Jacob, Marcus Brinkmann, Mark
Jason Dominus, Max Liebkies, Michael Noronha, Nicholas Bishop, Nicolas Laurent, Nils-Hero Linde-
mann, Oleg Komarov, Paul Houle, Paul Sargent, Robert Speer, Ryan, Ryan Gonzales, Ruth-Polymnia, S
Brown, Tonico Strasser, Vic Nightfall, Victor Uriarte, Vinay Sajip, franz_g, gkimbar, nehz , neumond,
pdw-mb, pgebhard, siemer

73

https://github.com/azazel75
https://github.com/acw1251
https://bitbucket.org/basel-shishani
https://github.com/davidchen
https://bitbucket.org/linkdd
https://bitbucket.org/drothlis/
https://github.com/davesque
https://github.com/davesque
https://bitbucket.org/jimon
https://github.com/fcoelho
https://github.com/fpom
https://bitbucket.org/leewz
https://bitbucket.org/gapag
https://github.com/gvanrossum
https://github.com/gvanrossum
https://github.com/rayjolt
https://bitbucket.org/starkat
https://github.com/tirkarthi
https://github.com/manueljacob
https://bitbucket.org/lambdafu/
https://github.com/mjdominus
https://github.com/mjdominus
https://bitbucket.org/gegenschall
https://github.com/mtn
https://github.com/nicholasbishop
https://github.com/norswap
https://github.com/heronils
https://github.com/heronils
https://github.com/okomarov
https://github.com/paulhoule
https://bitbucket.org/pauls
https://bitbucket.org/r_speer
https://github.com/r-chaves
https://github.com/kirbyfan64
https://github.com/Ruth-Polymnia
https://bitbucket.org/sjbrownBitbucket
https://bitbucket.org/sjbrownBitbucket
https://bitbucket.org/tonico_strasser
https://github.com/Victorious3
https://bitbucket.org/vmuriart
https://bitbucket.org/vinay.sajip
https://bitbucket.org/franz_g
https://bitbucket.org/gkimbar
https://bitbucket.org/nehz
https://bitbucket.org/neumond
https://bitbucket.org/pdw-mb
https://bitbucket.org/pgebhard
https://bitbucket.org/siemer

TatSu Documentation, Release 5.6.1

74 Chapter 19. Contributors

CHAPTER 20

Contributing

TatSu development is done on Github. Bug reports, patches, suggestions, and improvements are welcome.

20.1 Donations

If you’d like to contribute to the future development of TatSu, please make a donation to the project.

Some of the planned new features are: grammar expressions for left and right associativity, new algorithms for left-
recursion, a unified intermediate model for parsing and translating programming languages, and more. . .

75

https://github.com/neogeny/TatSu
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=2TW56SV6WNJV6
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=2TW56SV6WNJV6

TatSu Documentation, Release 5.6.1

76 Chapter 20. Contributing

CHAPTER 21

License

TATSU - A PEG/Packrat parser generator for Python

Copyright (C) 2017-2019 Juancarlo Añez All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

77

	Introduction
	Rationale
	Installation
	Using the Tool
	As a Library
	Compiling grammars to Python
	The Generated Parsers
	Using the Generated Parser

	Grammar Syntax
	Rules
	Expressions
	Rules with Arguments
	Based Rules
	Memoization
	Rule Overrides
	Grammar Name
	Whitespace
	Case Sensitivity
	Comments
	Reserved Words and Keywords
	Include Directive
	Left Recursion

	Grammar Directives
	@@grammar :: <word>
	@@comments :: <regexp>
	@@eol_comments :: <regexp>
	@@ignorecase :: <bool>
	@@keyword :: {<word>|<string>}+
	@@left_recursion :: <bool>
	@@namechars :: <string>
	@@nameguard :: <bool>
	@@parseinfo :: <bool>
	@@whitespace :: <regexp>

	Abstract Syntax Trees (ASTs)
	Semantic Actions
	Building Models
	Walking Models
	Model Class Hierarchies

	Templates and Translation
	Left Recursion
	Calc Mini Tutorial
	The initial grammar
	The Tatsu grammar
	Add cut expressions
	Annotating the grammar
	Semantics
	One rule per expression type
	Object models
	Code Generation

	Traces
	Grako Compatibility
	Using ANTLR Grammars
	Examples
	Tatsu
	Calc
	g2e

	Support
	Credits
	Contributors
	Contributing
	Donations

	License

